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Abstract— We present a linear reformulation of the Kuramoto
model describing a self-synchronizing phase transition in a het-
erogeneous system of globally coupled oscillators that in general
have different characteristic frequencies. While this approach can
also be applied to systems with a finite number of oscillators,
discussion here will focus on the reformulated model in the
continuum limit, the regime of validity of the original Kuramoto
solution. This new approach allows one to solve explicitly for
the synchronization order parameter and the critical point for
a new class of continuum systems that have no solution through
the traditional approach to the Kuramoto model. Furthermore,
the synchronization order parameter will be shown to exhibit
anomalous scaling in the vicinity of the critical point. This novel
linear approach appears to be a promising way to extend the
applicability of the Kuramoto model, which is the paradigm of
spontaneous synchronization. Although discussion here will be
restricted to systems with global coupling, the formalism of the
linear approach also lends itself to solving systems that exhibit
local or asymmetric coupling.

I. I NTRODUCTION

The Kuramoto model of self-synchronizing coupled phase
oscillators is recognized as important for being able to describe
diverse synchronization phenomena such as collective atomic
recoil lasing, the behavior of Josephson junction arrays, and
neural firing patterns [1][2][3]. In a broader sense, however,
the Kuramoto model is an exactly solvable model that exhibits
behavior reminiscent of a nonequilibrium phase transition. As
such, it is a useful medium through which we can develop a
better comprehension of nonequilibrium systems and, to this
end, in this paper we seek to extend the Kuramoto solution.
Certainly, a more general Kuramoto solution will also broaden
the applicability of the Kuramoto model as a paradigm of
spontaneous synchronization.

To generalize the Kuramoto solution we will take a linear
approach, which will phrase this nonlinear problem in terms of
eigenvalues and eigenvectors, opening it up to spectral theory
and other tools and powerful techniques developed for solving
linear problems. Note that only the fully locked transition will
be considered here.

We shall begin by presenting a linear model that maps
onto the Kuramoto model and deriving the general solution
it yields for the synchronization order parameter and the
critical point of a continuum system of oscillators. We then
focus on a system with a particular coupling scheme, which

cannot be solved using the traditional approach. We present
the solution for this case, demonstrate that the synchronization
order parameter has anomalous scaling about the critical point,
and apply this linear approach to oscillator systems with
different characteristic frequency distributions.

While the discussion here will cover only the continuum
limit and global coupling, which is the regime of validity of the
traditional Kuramoto solution, the linear approach presented
can also be used to solve systems populated by a finite number
of oscillators [5] as well as systems with local or asymmetric
coupling. For further details of these results, see [5] and [6].

II. L INEAR REFORMULATION FOR GENERALIZED

COUPLING

For a system of coupled oscillators in the continuum limit,
the linear reformulation of the Kuramoto model to be dis-
cussed here can be expressed as

ψ̇(ω, t) = (iω − γ)ψ(ω, t) +
∫ ∞

−∞
Ω(ω, ω′)g(ω′)ψ(ω′, t)dω′,

(1)
whereΩ(ω, ω′) describes the coupling between pairs of oscil-
lators with characteristic frequenciesω andω′ respectively, the
phases of the complex variableψ(ω, t) correspond to those of
the system’s oscillators whose synchronization properties we
investigate, andg(ω) is the distribution of their characteristic
frequencies.γ is a parameter fixed according to the system
parameters such that the amplitude ofψ(ω, t) goes to a
steady state in the long-time limit. This allows the linear
model to be mapped onto the original Kuramoto model in the
synchronized region, since with the nonlinear transformation
ψ(ω) = R(ω)eiθ(ω) we can write the real and imaginary parts
of eq. (1) as

Ṙ(ω) = −γR(ω)+
∫ ∞

−∞
Ω(ω, ω′)g(ω′)R(ω′) cos[θ(ω′)−θ(ω)]dω′

(2)

θ̇(ω) = ω +
∫ ∞

−∞
Ω(ω, ω′)g(ω′)

R(ω′)
R(ω)

sin[θ(ω′)− θ(ω)]dω′,

(3)
and, ifR(ω) goes to a steady state in the long-time limit, eq.
(3) is simply the Kuramoto model with a generalized coupling

K(ω, ω′) = Ω(ω, ω′)
R(ω′)
R(ω)

. (4)



Note that the variableR(ω) is introduced simply to carry out
the mapping, and has no physical significance.γ is set such
thatR(ω) will reach a steady state.

Having reformulated the Kuramoto model in terms of linear
dynamics, we can proceed to analyze and solve it using
tools from the linear repertoire. Indeed, the synchronization
problem can be discussed in terms of the spectrum of the
linear operator on the RHS of eq. (1). More precisely, let
K(ω, ω′) = Ω(ω, ω′)g(ω′) − iωδ(ω − ω′) and assume that
the Fredholm integral equation∫

<
dω′K(ω, ω′)φσ(ω′) = µσφσ(ω), σ ∈ Z,R (5)

has a mixed, discrete-continuum spectrum{µn, µσ}. Then a
generic solution of (1) is given by

ψ(ω, t) =
∑
n∈Z

anφn(ω)e(µn−γ)t+
∫

σ∈R
b(σ)φσ(ω)e(µσ−γ)tdσ,

(6)
with coefficients{an}n∈Z, {b(σ)}σ∈R determined by initial
conditions.

The spectrum{µn, µσ} determines the appropriate value of
γ, which we set equal to the real part of the eigenvalue with the
largest real part. It becomes evident that this spectrum dictates
the synchronization behavior of the system. If there is only one
eigenvalue whose real part equalsγ then in the long-time limit
contributions from all other eigenvalues die away,R(ω) goes
to a steady state, the linear model maps onto the Kuramoto
model with time-independent coupling, and there is full phase
locking and synchronization (as defined below). Otherwise,
more than one eigenvalue remains,R(ω) does not reach a
steady-state value, and the phases ofψ do not converge.

As mentioned earlier, we will restrict our discussion to
systems with no partial population of drifting oscillators, i.e.
the incoherent-to-partially locked (usually referred to as the
synchronization transition) and the partially locked-to-fully
locked phase transitions occur at the same point [4]. We
say our system is synchronized if the synchronization order
parameter given by

r =
∣∣∣∣∫ ∞

−∞
dωg(ω)eiθ(ω)

∣∣∣∣ =
∣∣∣∣∫ ∞

−∞
dωg(ω)

ψ(ω, t)
|ψ(ω, t)|

∣∣∣∣ (7)

goes to a nonzero steady-state value [2][3]. As mentioned
above, this happens at the critical point where the real part
of more than one eigenvalue becomes equal toγ. So in the
synchronized region where the real part of only one eigenvalue
equalsγ,

r =
∣∣∣∣∫ ∞

−∞
dωg(ω)

b(ω)
|b(ω)|

∣∣∣∣ (8)

whereb(ω) is the eigenfunction corresponding to that differ-
entiated eigenvalue,λN .

III. SOLUTION FOR SPECIFIC COUPLING

A. Solution of the synchronization order parameter

Let us consider now one type of global coupling in the
linear model,Ω(ω, ω′) = Ω. The linear model describes this

Fig. 1. The spectrum of eigenvalues associated with the RHS of eq. (9) when
Ω > Ωc. The spectrum comprises a continuum of eigenvalues along−γ and
a single eigenvalue at the origin. AsΩ → Ω+

c , γ → 0, and the continuum
approaches the imaginary axis and the eigenvalue at the origin. WhenΩ ≤
Ωc, γ = 0, and the continuum of eigenvalues sits on the imaginary axis and
the eigenvalue at the origin becomes indistinguishable from the continuum.

system as

ψ̇(ω, t) = (iω − γ)ψ(ω, t) + Ω
∫ ∞

−∞
g(ω′)ψ(ω′, t)dω′, (9)

which maps onto the original Kuramoto model with the
following coupling constant:

K(ω, ω′) = Ω

√
(ω − ωr)2 + γ2

(ω′ − ωr)2 + γ2
, (10)

whereωr is the collective frequency of the synchronized state
and is given by the imaginary part ofλN , =(λN ). With this
coupling scheme, we can solve the spectrum of the RHS of
eq. (9) exactly.

With γ set as described above, the spectrum comprises a
continuous line of eigenvaluesλ in the complex plane along
<[λ] = −γ (<[λ] denoting the real part ofλ) for any value
of Ω and one eigenvalueλN at the origin, which stands apart
from the continuum of eigenvalues ifΩ > Ωc. As Ω → Ω+

c ,
γ → 0, and for Ω ≤ Ωc the continuum of eigenvalues lies
along the imaginary axis andλN becomes indistinguishable
from the continuum, as shown in Figure 1; since, in the steady
state, the entire spectrum remains, it is clear thatr = 0 for
Ω ≤ Ωc.

Setting the collective frequency=[λN ] to zero,γ toRe[λN ],
and assumingg(ω) is an even function and nowhere increasing
for ω ≥ 0, we arrive at the following formula that determines



γ:

1 = Ω
∫ ∞

−∞

g(ω)γ
γ2 + ω2

dω (11)

By taking γ → 0+ and assumingg(ω) has a finite width, it
becomes clear from eq. (11) that

Ωc =
1

πg(0)
. (12)

From eq. (8), forΩ > Ωc, we can determine the following
explicit expression forr:

r =
∫ ∞

−∞
dωg(ω)

1√
1 +

(
ω
γ

)2
. (13)

where γ can be determined from eq. (11). So, for a given
distributiong(ω), eqns (11), (12), and (13) completely specify
r(Ω) andΩc for K(ω, ω′), eq. (10). (For details, see [6].)

It is interesting to note that aboutΩ = Ωc the behavior
of r resembles a second-order phase transition in thatr grows
continuously from zero as the coupling increases. WhereΩ →
Ω+

c , r → 0 because, although the oscillators are phase locked,
the phases of the oscillators are evenly distributed from zero to
2π, i.e. the system is in a splay state [7]. Below, we investigate
the scaling behavior aboutΩ = Ωc, where this second-order
“phase transition” occurs.

B. Anomalous scaling

If one assumesg(ω) to be such that
∫∞
−∞ dωg′(ω)/ω is

nonzero and finite (whereg′(ω) ≡ ∂ωg(ω)), then perturba-
tively the behavior ofγ asΩ → Ωc becomes

γ = − πg(0)∫∞
−∞ dωg′(ω)/ω

(
Ω− Ωc

Ωc

)
+O

[(
Ω− Ωc

Ωc

)2
]
.

(14)
As γ → 0, the behavior ofr(γ) can be described by

r(γ) = −2g(0)γ log[g(0)γ] +O[g(0)γ]. (15)

This behavior ofr can be seen as anomalous with respect
to the usual square-root scaling behavior of the traditional
Kuramoto solution. One might venture that the anomalous
scaling is due to the bicritical nature of the critical point. For
derivation and explanations of this behavior, see [6].

C. Specific examples of characteristic frequency distributions

With these general solutions for the parameters of any
system with global couplingΩ(ω, ω′) = Ω, we can solve for a
specific system given its characteristic frequency distribution.
Take for instance the Lorentzian distribution aboutωr, i.e.
g(ω − ωr) = ∆

π[∆2+(ω−ωr)2] . From eq. (12) we findΩc = ∆,
and from eq. (11),γlor = Ω−∆. Using these in eq. (13), we
obtain

rlor =
2 cos−1

(
Ωc

Ω−Ωc

)
π

√
1−

(
Ωc

Ω−Ωc

)2
(16)

Fig. 2. The synchronization order parameter as a function of the normalized
coupling constant for a uniform and Lorentz distribution of characteristic
frequencies

for Ω > Ωc, as shown in Figure 2.r = 0 for Ω ≤ Ωc as
discussed above. The scaling for this distribution is then

rlor ≈
2
π

Ω− Ωc

Ωc
log

(
Ωc

Ω− Ωc

)
. (17)

This agrees with eqns (14) and (15) knowing that, for this
Lorentzian distribution,g(0) = 1

π∆ and
∫∞
−∞ dωg′(ω)/ω =

− 1
∆2 .
Similarly, for a uniform distribution aboutωr, i.e. g(ω −

ωr) = 1
π∆ for |ω − ωr| < π∆/2 and 0 otherwise, the above

equations giveΩc = ∆, γunif = ∆π
2 cot

(
π∆
2Ω

)
, and

runif = cot
(
π

2
Ωc

Ω

)
sinh−1

[
tan

(
π

2
Ωc

Ω

)]
(18)

for Ω > Ωc (see Figure 2). As above,r = 0 for Ω ≤ Ωc. The
scaling for the uniform distribution is

runif ≈
π

2
Ω− Ωc

Ωc
log

(
Ωc

Ω− Ωc

)
. (19)

Again, there is agreement with eqns (14) and (15) asg(0) =
1

π∆ and
∫∞
−∞ dωg′(ω)/ω = − 4

(π∆)2 .

IV. CONCLUSION

The linear reformulation presented here of the Kuramoto
model constitutes a fresh take on the problem of self-
synchronization of a heterogeneous population of coupled
phase oscillators, opening it to solution through established
linear approaches such as spectral theory. This alternative
treatment of spontaneous synchronization can give new insight
into the mechanics underlying the phenomenon. In addition,
this method allows for analytical solutions of systems with
finite oscillator populations. Although we have restricted our-
selves to the fully locking transition with global coupling, this
method holds great promise for solving partial synchronization
states and for synchronization problems in complex topologies.
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