
About a New Kind of Autonomous,
Self-adapting Agents and the Library Game

Environment

Herwig Unger, Daniel Berg
Fakutät für Mathematik und Informatik

Lehrgebiet Kommunikationsnetze
58084 Hagen, Germany

kn.wissenschaftler@fernuni-hagen.de

Self adapting agents with local knowledge should be able to

manage global ressources in dynamic networks automatically. In
this paper the library game is introduced – a simulation which
uses the methaphor of migrating libraries that try to find paths
through the network in such a way, that the satisfaction of all
book-consumers reaches a maximum.

Keywords—self-adaption; learning; agent; Library Game

I.

II.

MOTIVATION
Computer networks of big companies today become more

and more complex, i.e. not only the number of machines is
growing but also the number of connected networks as well as
the specialization of the machines within the network (which
may equipped with special hard- or software). Furthermore,
the dynamics of cooperation in more and more complex
development processes result in a permanent change of user
groups accessing and changing data and programs on the
servers in the system. In such a manner the task of system
administrators become an extremly tedious one, since a lot of
different requests must be considered. Since no single
administrator may oversee the huge amount of factors
influencing the system behaviour and also do not have access
to configure all the several networks in a respective manner,
the system behaviour will be less and less an optimal one. The
purpose of the present contribution is to consider a new kind
of autonomous and self adapting agents, which are able to
make automatic decisions on which machine in a complex
system which data shall be stored. Differing to existing works,
less theoretical aspects but more applicability is in the
foreground of our consideration. With our agents we intend to
model a multicriterial decision process, taking user behaviour
as well as network parameters and economic influences into
account. In order to present our approach in a well defined
analyseable environment, we first abstract from real networks
and setup a similar environment for our considerations: the so
called library game envioronment, which shall also
demonstrate similarities in the solution of problems from
different areas like computer networks, traffic organization or
tasks derived from a financial and economic background.
Then we briefly introduce a new kind of an autonoumous, self
adapting agent which is able to extract complex behavior in a
process similar to human abstraction. The agents can choose

from a small set of basic, atomic actions and combine them
within a learning- and adaption process to achieve a more
complex behaviour in order to increase its satisfaction which
is a measure for its success. The last sections of the present
contribution describe our simulation setup and the results. In
these simulations we address mostly the task where data shall
be located to and when it is worth to migrate them to which
other places in a complex network. Future work will discuss
more detailed the possibilities also to learn pricing strategies
and the impact of combinations of different influencing
factors.

THE LIBRARY GAME SETUP
Following our outline, the library game environment shall

be introduced more formally at first. We consider a set of
players , consisting of 2 groups, server or service provider
(in our case libraries) and Customers . Therefore

P
S C

CSP ∪= and furthermore let us assume for the moment
that 0=∩CS , i.e. each player is either a service provider
(library) or customer. In detail the set of service providers will
be defined by the ordered set , the set of
customers by respectively. To simplify the
problem, we assume that the game is played in a (geographic)
neighborhood, where any 2 players have a distance
given by with

})1(1|{ oisS i ==
})1(1|{ njcC j ==

Ppp ji ∈,
)(, ji ppd ℜ∈d .

Each player may have some parameters and attributes. In
detail we need functions to obtain:

1. : the current budget of)(ipB ip

2. : any fixed payments, costs (-) or income (+) of
pi per time unit

)(ipI

3. : a request function for services of pi in each
time unit and finally

)(ipN

4. : the current service fee of pi per service unit
for any customer.

)(ipF

It is clear that these values have some special cases, for the
moment we can easily see that 0)(,0)(,0)(=≤≥ iii sNsIcI and

0)(=icF .
The request CccN ii ∈∀)(is a fixed (over all customers

power-law) distributed function, determining how many goods

(books) a customer wants to obtain from any library per time
unit (e.g. per month). Consequently, a respective satisfaction
σ for all can be defined by Cci ∈

where i is the number of books which ic with its

current budget i really could rent from a library in this
time unit. It is clear that every customer strives to increase its
satisfaction until 1.

)(cG
cB)(

To define the library fully, some more rules are needed as
follows.

1. Each customer must pay for the transport of
goods from and to the libraries; these costs are
proportional to the distance. The costs for the
transport are .

Cci ∈

),(*1 ji scdconst

2. The goal of customers is to increase their satisfaction.
3. The goal of libraries is to survive. A library survives,

if its budget is months not lower than
zero.

)(isB 2const

Consequently, each customer ci will rent books at the

cheapest location, whereby costs are determined from the
server sj and transport costs from the distance, only. With a
monthly fixed income I , the number of goods ci obtained
from sj can be calculated by

With these definitions the book rental Matrix G can be

determined for each time unit (month) t by:

where t denotes the number of the respective discrete time

steps in the game simulation. It is clear, that this matrix may
change if the libraries and customers change their location and
/ or payments are changed. Since every customer tries to
obtain the highest possible number of goods in order to
increase its satisfaction σ , it is clear that

In case equal),)(~(ji scg exist, one being different from zero

is randomly chosen.

Remarks:

1. In each line (row) represent one customer each
column one library

)(tG

)(
)()(

i

i
i cN

cGc =σ 2. After each time step (month) t , the customer
satisfaction)(icσ can therefore be calculated by

)(

),,(
),(1

i

o

j
ji

i cN

tscg
tc

∑
==σ

i.e. a can be defined by

)(icG

∑
=

=
o

j
jii tscgcG

1
),,()(

3. The budget of after can be calculated by

ic t

)())],()()(,,([

))1(,(:),(

1
1 i

o

j
jijji

ii

cIscdconstsFtscg

tcBtcB

∑
=

+⋅+

−−=

4. The budget of any library can be determined by

js

)()]()(,,([))1(,(:),(j
o

ni
jjijj sIsFtscgtsBtsB ∑

=
+−−=

The next sections describe the algorithms used by the
providers and customers in detail.

III.

A.
∈

THE LIBRARY GAME AGENT
)),()((

)(),)(~(
1 jij

i
ji scdconstsF

cIscg
⋅+

=
Definitions to understand the agents’ behavior

It is clear that service providers (libraries) j as well as
customers i

Ps
Pc ∈ are autonomous agents, i.e. isolated units

which can act on their own. In later sections we will mostly
consider the 2 cases, where service providers may change their
location and / or service’s fee while most other parameters are
fixed so far. However in all cases we intend to make the
agents able to learn by one and the same algorithm which will
be described in that section in detail. Therefore, of course,
some more definitions are needed. Most of them concern
values to describe the inner behaviour of an agent and its
interaction with its environment.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

),,(...),,(),,(
.........

),,(...),,(),,(
)(

21

12111

tscgtscgtscg

tscgtscgtscg
tG

nooo

n

1. The Event e

An event is a tupel EA where
A describes the state of the environment the agent

may see before it is doing any activity, while E is
the state the agent sees after completing this activity.
Both, A and E must be from the set of states

{ rzaze },,,=
z

z

z z Z of
the considered system. The activites of an agent may
be selected from a set of elementary activities Aa∈ ,
which must be defined and fixed for each agent.
Finally, after the execution of an activity, the agent
obtains a reward ℜ∈r .

⎩
⎨
⎧ ≠=∀<↔

=
else

jkokscgscgscg
scg kijiji

ji 0
,)1(1),)(~(),)(~(),)(~(

)(,

2. The event tape E
All events executed by an agent (or at least a

bigger number of τ of such events) are kept on the so
called event tape of this agent and may be recalled for
any analysis or knowledge extraction. Since we
consider always one agent at the moment, we do not
add the agent’s name to the identifier of the event
tape and just call it E. Furthermore we write for
simplification instead of mostly ia . In such
a manner the event tape is an ordered set given by

)(ia eZ Z ,

(){ })1|)(|1(1,,,| ,1,,, −=∀=∧== + EizzrizazeeE ieiaiEiiaii .
Note that denotes the actual length of the event
tape.

|| E

3. The Intelligence q of an agent
Each agent is able to compose several elementary

instructions to a sequence of instructions under a
name. This ability is something like an abstraction
process and naturally the length of sequences learnt
will increase with time and experience of the player.
To consider this ability of an agent the intelligence
is introduced to be the maximum length of any
instruction sequence the agent may store. I.e., the
actual intelligence will be denoted by max

q

)1(1 qq = ,
where max is a constant for the maximal reachable
intelligence.

q

4. The Instruction Memory M
The instruction sequences which an agent may

build in the abstraction process depending on its
current intelligence will be kept in a special
instuction set memory M . In such a manner

; where c is the maximum number
of instruction set to be kept and each instruction

consists of course of a set of events, i.e.
 Since the instruction

sequences are extracted in an abstraction process
from the contents of the event tape

},...,,{ 21 cmmmM =

Mm∈
cieeem ki)1(1},...,,{ 21 =∀=

E it is clear that
 and .Furthermore,
and finally is called length of

instruction sequence, which must be .

)()(1 jEjA ezez =+ qk ≤
EmMm ii ⊆∈∀ : kmi =||

q≤

5. Distancefunction d
In several stages of our library game and other

game setups it will be necessary to compare two
states i and j . Not in every case every component
of a state is absolutely equal to the other one. That is
why a distance function is introduced and
used to determine if two states are similar (almost
equal) or not. If , then and j are called
similar or equivalent and we write .

z z

),(ji zzd

ε<),(ji zzd iz z
ji zz ~

6. Curiosity p
Every learning process requires that the agent is

able to explore its environment, i.e. have a random
component allowing him to do new, so far
undetermined steps in its behavior. The curiosity p
of an agent is the probability describing how often
the agent does not follow any known instruction
sequence but has fully random behaviour for a given
amount of steps.

7. Reward of an instruction sequence ∑R

The goal of each agent is of course to get a
maximum profit or satisfaction from his activities. So
after every activity an agent may obtain a reward

ℜ∈r from the environment, which can be used to
evaluate the success of an activity or instruction set.
While the reward of each activity is a simple value,
the reward of any sequence of activities is given by
the sum of the rewards obtained in each step:

Shorter we can also write for any Mmi ∈ :

8. LRU (Last recently used memory) L

Last but not least we need an intermediate
memory for the extraction of information from the
event tape E . Mostly it is important, to process parts
of E , which are similar / equal to the last processed
sequence of events and activities. This is the content
of the LRU memory : 21 klast at
discrete time point last , i.e. llast is the last executed
sequence while higher indices of i denote sequences
which have been executed in the farer past.

L },....,,,{ llllL =
tt =

l

• Let be the length of the considered
(last) instruction sequence on

lengthseq _
E , given as a fixed

value for the moment.

• Then is determined by
with

lastl
),...,(_ tlengthseqtlast eel −= Ee j∈

• The other elements of L are given by

Of course, runs from . In this
process either the whole event tape or only a part
of it (a finite history) maybe considered. If we
require that

Elki

lezlezLl

i

ixjalastjAi i

⊂∧=∀

↔∈ −

)1(1

))((~))((

j lengthseqj _)1(1=

− txi < we obtain an infinite horizon while
− constxi < results in a finite case with a finite

event horizon of the agent.

B.

∑
=

⊂<=∑

b

i
baiiba EeebaereeR }...{,),(),(

 The agents’ algorithm
This section presents the agents’ algorithm which is

executed by the agents in an infinite loop. Beside writing
down all events and the observation of the environment on a
tape an agent must meet a decision in each situation. For the
implementation we intended to implement a behaviour similar

a

∑
=

∈∀=∑

||

1
)()(

im

i
iiiii meermR

to the human one. Due to its event tape the agent may
remember former situations and may decide whether his
behaviour in such states was successful or not. In case a state
is reached again and a successful activity sequence is known,
the agent repeats it in the hope of another positive reward
from doing so. If no successful activity is known, the agent
can only try any random, elementary activities. The same the
agent shall do in any state from time to time in order to be able
to optimize its behaviour or to investigate any new appearing
possibilities to obtain a higher reward than so far.

In detail, the agent has to execute the following algorithm.

init Z = Z0 // initial state
init E = {}
init M = {} // init empty event tape and memory
init L = {} // empty last instruction memory
init q = 1 // reactive behaviour at start

for (;;)
{
 if (p) // random behaviour
 {
 for i = 1(1)q
 {
 random (a)
 make e = (z, a, zE, r)
 z = zE
 write (E, e)
 //seq_length = q
 }
 }

 else if ()~))((: 1 zmezMm a∈∃
 {
 // Point with known successful

 // instructionset at first search in M
 for i = 1(1)|mi| // execute that

 {
 make (ei(mi))
 z := ze(ei(mi))
 write (E, ei)
 //seq_length = |mi|
 }
 }
 else
 {
 t = compose_seq_with_biggest_reward (E, z)
 //compose a sequence by choosing a event
 //sequence from tape E which maximizes the
 //reward!

 if (!isEmpty(t))
 {
 for i = 1(1)|t|
 {
 make (ei(ti))
 z := ze(ei(ti))
 write (E, ei)
 }
 }
 else // unknown position or no successful
 { // sequence known here
 random (a)
 make e = (z, a, ze, r)
 z := ze
 write (E, e)
 seq_length := 0
 }
 }
 evaluate (E, M, seq_length)

 // process results from last step
 }

Beside reacting to each situation in an optimal manner the
agent also has to evaluate and adapt his activities for any

situation and to learn the best behaviour. This is done within
the function evaluate() after each executed step as described in
the next subsection.

C. The evaluation procedure
The evaluation procedure considers the success of the last

executed activity sequence written to the event tape. In order
to ensure the success of an instruction sequence, it must be
found several times (minimal l times) on the event tape
and during each application should have shown a suitable
reward behaviour. Depending on the reward obtained and the
state of the instruction memory, the following reactions may
be reasonable.

MIN

• while the instruction memory still has empty
positions, any successful instruction sequence with a
reward > 0 can be kept

• if the memory is full, an instruction sequence can be
replaced, if the current sequence guarantees a better
reward for the same initial state or guarantees a
globally higher reward for any other maybe so far
unknown initial state.

• if the memory is full and no optimizations can be
found for a long time () it is assumed that
improvements can be found only with higher
expenditure, i.e. longer instruction sequences which
are only possible with a higher intelligence of the
individuum. Therefore in this case the intelligence q
must be increased by 1.

MAXT

The above described behaviour is achieved by the function
evaluate():

function evaluate (E,M, seq_length) {
build (L) // build LRU mem
if |L|<MINl break // no activity, if sequence not
 // MINl t imes on event tape

∑=
=∈∀

∑

||

1
))(()(jl

i jiijj lerlRcountLl

||

)(||
1

L

lR
Rset

L
j j∑ = ∑

∑ =

 //average instruction set reward

if NOTFULL (M) ^ (Rz(llast)>0) ^ llast ∉ M
 //no activity with same zA
{
 add (M; llast)
 T = 0
} // fill instruction memory

if FULL (M) ^)(),(: MmmRRi iiz ∈>>∀

{
 MIN_R_replace(M, llast)
 T = 0
} // replace globally sequences
 // with much less known reward

if FULL (M) ^))()(~)((Σ
<↔∃ RmRzmzm ilAiai last

{
 replace (M, mi, llast)
 T = 0
} // replace a worse sequence in known situation
if T > TMAX // if no change for
 // a long time, increase intelligence
{
 T := 0
 q := q + 1
}

IV. IMPLEMENTATION
The LibraryGame is implemented in Java using the

P2PNetSim framework. P2PNetSim is a highly scalable
simulation tool that makes it possible to implement large p2p
network simulations and many other kinds of simulations
within large groups of individuals even based on social
interaction.

Figure 1: The LibGame in the P2PNetSim Environment

Customers and Providers within this context are modelled
as interacting peers communicating via messages with each
other. At each simulation time step they can perform actions
like requesting services (customers), serve requests and
change their positions (providers). T=50 time steps form a
simulation cycle. Within one cycle the positions of all
providers remain constant. After one cycle is over, the
customers receive new payments and the providers initiate an
evaluation- and migration procedure before the next cycle
begins as described in the previous sections.

Some additional parameters have to be considered for the
implementation of the LibraryGame simulation:

• Tapesize
The sections above implied a potential infinite tape
size. For the simulation set-up the tape is
implemented as FIFO-memory with a fixed size of
1.000.000. To simulate an ‘infinite’ band this value is
high enough, but it strongly depends on the given
field-size on which the game is played.

• FieldSize

This is the dimension of the field on which the library
game is played. For the example simulation it is set to
20x20.

• Memorysize

The maximum number of sequences which can be

stored in a provider’s memory. Like tapesize, the
optimal value for memorysize finally depends on
other simulation parameters.

• intelligenceIncreasmentThreshold

This variable gives the number of cycles, a provider’s
memory needs to be unchanged before its intelligence
is increased. This value is set to 100.

• initialCuriosity

0 < initialCuriosity < 1: This value gives the
propability that a providers chooses a random
sequence instead of choosing an existing sequence
from tape or from memory.
Several simulation-runs showed that this value has to
be relatively high (>0.7) to enable the providers to
find acceptable sequences. However, if a certain
number of sequences was found, such a high value
tends to destroy those sequences. In this simulation
we used a value of 0.80.

• processesPerCycle

This variable defines the number of simulation steps
a provider remains at a certain position to serve the
customers’ requests before it migrates to a new
position. This value is fixed to 50. A cycle can be
understood as somewhat like a month in real-life
situation.

• defaultServicePrice_(F(ci))

The fee a provider gets every time a customer
consumes a service. This is fixed to 3.0 for all
services of all providers.

• transportCostsPerUnit

When a customer consumes a services from a
provider, the provider has to pay transport costs in
addition to the service itself. To calculate this
transport costs the Eucledian distance between the
customer and provider is multiplied by the
transportCostsPerUnit. For each cycle the customer
then chooses the provider with the chapeast transport
costs. For the simulation discussed here, the
transportCostsPerUnit is constantly fixed to 2.0.

• customerPayment

After each cycle, the customers gets a ‘monthly
payment’ of customerPayment = 2.0

A. Customer’s Setup
The customers get randomly chosen positions which stay

constant during the simulation and a request frequency
0<f<=1. A request frequency of 1 means, that the customer
performs a request at every simulation timestep of a cycle.

The customers commonly have different, power-law
distributed request frequencies given by:

where n is the number of customers andε is the lowest request
frequency for customer n-1. To simplify simulation analysis,
ε is set to 1, meaning that all customers have a request
frequency of 1.

Within a cycle that consists of T=50 simulation time steps,
a provider with a request-frequency of if can perform at most

if50 requests. Usually there will be less requests, because a
provider may be too far away and especially in the end of a
cycle a customer may have ran out of money. The customer
then has to wait for the next cycle, in which he gets his
‘monthly payment’.

This results in a decreasing satisfaction value for this
customer. A customer’s satisfaction for a certain cycle is
defined as

The over-all satisfaction then is the average satisfaction

over all cycles. The satisfaction of a provider is directly
dependant on its balance.

B.

C.

V.

Provider’s Setup
Following the LibraryGame definition the providers

actually have to pay for migration-activities. But in first
instance we are interested in the paths, a provider takes
through the LibraryGame map. So providers don’t get a
payment at all, and they don’t have to pay for position
changes. Therefore, the satisfaction of a provider can directly
be measured by observing its balance.

Simulation Results
Figure 2 shows some screenshots of a simulation run with

the above discussed setup. One provider (red dot) offers a
service to three customers (black dots). The red lines represent
the provider’s memory state. In a first phase (figure a to b) the
sequences stored in memory are concentrated around the
customers. The intelligence is not big enough yet, to model
paths that are long enough to lead from one customer’s
position to another while preserving a big reward.

This situation starts changing at 000.80=cycleT . The first
paths occur which lead from one attractive area to another
(figure 1c, from Customer1 to Customer0) Even though this
paths could disappear by being replaced by other, more
attractive paths, sooner or later they will be re-established and
strenghed due to the growing intelligence. (see fig. 2e, 2f).
The closer the positions of two providers are, the sooner a path
between them will be generated. In this example the relation

)2,1()2,0()1,0(cstcstdcstcstdcstcstd <<

implies the order in which the paths between the customers
most likely will be established.

After approximately 0.5 Million cycles and an intelligence
of ~60 the memory content shows sequence combinations
which finally involve all customers. It is possible to extract
one path from the memory which is an optimum to serve all
customers and to maximize their satisfactions.

⎪
⎩

⎪
⎨

⎧
<<∀

=
= −

⋅

ni
nif

ef n
i

i 1
11

1
lnε

a) Tcycle=1000, i=2 b) Tcycle=20000, i=10

c)Tcycle=80000, i=19 d) Tcycle=122000, i=25

e) Tcycle=240000, i=42 f) Tcycle=560000, i=63

Figure 2: The LibraryGame Simulator;
i: intelligence; TCycle: simulation cycle – one cycle is 50
simulation steps

10;
*__

≤≤=

ii customerCustomer sat
fcycleperstepssimulation

cycleonewithinperformedrequestssat
i

DISCUSSION & OUTLOOK
The algorithm is able to find an optimal path on which a

provider could walk to maximize the statisfaction of all
customers. But it still converges very slowly. To speed up the
convergence, it may make sense to reduce the providers’
curiosity during the game. This would reduce the effect, that
sequences which actually are acceptable and could be used as
subsequences for better paths just disappear. Also, the
composition of random walks could be optimized. One
optimisation which is already used in this simulation is to
forbid duplicate path sections within the composition of a
random sequence. This prevents the customer of performing
too many and too tight circles around an attractive position.
Another possibility would be to give a preferred direction as a
tendency to the providers when composing random walks.
This tendency would be changed from time to time and would
enforce the provider to leave attractive positions and therefore
raise the propability to enter other attractive regions.

In further researches it has to be found out, if this
algorithm could be used to make more providers cooperating
witch each other in such a way, that the providers dynamically
‘share’ the customers to provide a maximum over-all-
satisfaction for all of them. For this it would make sense to
give a ‘preferential threshold’ to the customers, that make
them use a certain provider for a while, even if it is not the
cheapest provider anymore. This would correspond to real-
life-situations, where consumers do not immediately change
the provider when he raises the price. They would still prefer

this provider ‘by habit’ at least a while before they come to the
conclusion to change. Providers then would have a chance to
leave their (pseudo-) optimal position to explore the
environment without having a too high risk of loosing all of
their customers.

Further works will accounter competing providers with
more differentiated pricing strategies and with a ‘character’.
This should enable a provider to decide to be defensive,
aggressive or cooperative according to other providers.

VI. REFERENCES

[1] Coltzau, H.: „Specification And Implementation Of A Parallel P2P
Network Simulation Environment“, 2005, Diplomarbeit

[2] n.n.: “Logistic Network Design”,
In: SWISSLOG, Feb. 2007
http://www.swisslog.com/wds-index/wds-consult/wds-cons-
network_design.htm

[3] Koller, D., Pfeffer A.: “Representations and Solutions for Game-
Theoretic Problems” Artificial Intelligence

[4] Milojicic, D.; Kalogeraki, V.; Lukose, R.; Nagaraja, K.; Pruyne, J.;
Richard, B.; Rollins, S. and Xu, Z.: “Peer-to-Peer Computing”,
Technical Report HPL-2002-57, HP Laboratory Paolo Alto, Mar. 2002.

[5] Brediny, B.; Maheswaranz, R.; Imer, C.; Basar, T.;Kotz, D.; Rus, D.: “A
GameTheoretic Formulation of MultiAgent Resource Allocation”
Proceedings of the Fourth International Conference on Autonomous
Agents, 2000

[6] Bredin, J: “Market-Based Mobile-Agent Planning: A Thesis Proposal”
1999, http://citeseer.ist.psu.edu/bredin99marketbased.html

[7] Bredin, J.; Kotz, D.; Rus, D.: “Economic Markets as a Means of Open
Mobile-Agent Systems”1999, http://citeseer.ist.psu.edu

http://citeseer.ist.psu.edu/bredin99marketbased.html

	I. Motivation
	II. The Library Game Setup
	III. The Library Game Agent
	A. Definitions to understand the agents’ behavior
	B. The agents’ algorithm
	C. The evaluation procedure

	IV. Implementation
	A. Customer’s Setup
	B. Provider’s Setup
	C. Simulation Results

	Discussion & Outlook
	VI. References

