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Abstract—In this paper an issue of mentality simulation in 
cellular automata (CA) models of pedestrian traffic is addressed. 
Anticipation, as one of the major mental properties, plays an 
important role in behavior of real pedestrians, allowing them to 
use additional information in a form of sensual perception, 
knowledge and experience, etc. for optimization of their 
trajectories. Here we propose an approach to implementation of 
anticipation property in CA models and discover a relation 
between anticipation and spatial de-localization of interactions. A 
number of simulation experiments demonstrated consistency of 
the proposed approach and revealed some specific features. 
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anticipation 

I.  INTRODUCTION 
One of the numerous applied fields, where cellular 

automata proved to be an extremely powerful tool, is 
modeling of pedestrian crowd motion [1], [2]. Having started 
from quite simple models inherited from physics, researchers 
are developing more and more sophisticated ones with a trend 
towards an introduction of mentality accounting into these 
models [3]. However, such “humanization” of a cellular 
automaton (CA), that is “mechanistic” by its nature, may 
demand changes not only in local rules, but also in the 
structure or in the pattern of interaction of cells. Basic 
property of a classical CA is locality of all interactions, both 
spatial (every cell interacts only with several neighbors) and 
temporal (next state of the CA is determined only by its 
current state). At the same time, when it comes to simulation 
of real crowds, this locality assumption is not always 
consistent, as pedestrians can somehow be informed about the 
situation beyond their immediate neighborhood (e.g. from 
visual observation or from notification systems). They can 
also use this information to predict the situation for several 
steps ahead and use these forecasts for optimization of their 
trajectories, a phenomenon, usually referred to as 
“anticipation” [4], [5]. Thus, the next step in development of 
the model is its de-localization, i.e. construction of a system 
lying in-between completely localized system (e.g. CA) and 
completely decentralized system (e.g. ANN1). 

                                                           
1  1 ANN – artificial neural network 

II. A BRIEF DESCRIPTION OF THE BASIC MODEL 
All the models presented here are based on a CA discrete 

in space and time. Thus, the model is [3]: 
• microscopic: every pedestrian is simulated by a 

separate cell; 

• stochastic: local rules contain random values; 

• space- and time-discrete. 

The basic assumptions behind the model are: 
• dynamics of pedestrian motion can be represented by a 

CA; 

• global route is pre-determined; 

• irrational behavior is rare; 

• persons are not strongly competitive, i.e. they do not 
hurt each other; 

• individual differences can be represented by 
parameters determining the behaviour. 

A CA has two layers (Fig. 1). The first one – data layer – 
embeds the information about the geometry of the scene, i.e. 
placement of pedestrians and obstacles. Every cell in this layer 
has 3 possible states: “empty”, “obstacle”, “pedestrian”. 

The second layer embeds a vector field of directions and 
stores the information about the global route. This field of 

a)                                                               b) 

Figure 1. Structure of the model 



directions is constructed so that to minimize evacuation time 
of a sole pedestrian. If there are several possibilities at a 
particular point, they are considered to be equally probable. 

At every time step, for every pedestrian probabilities of 
shift for all the directions are being computed according to the 
following principles: 

• if a target cell is occupied (by obstacle or other 
pedestrian), the corresponding probability is set to 0; 

• pedestrians try to follow the optimal global route. 

At every step the order of pedestrians’ shifts is randomly 
chosen. Persons differ in their maximum speed. These 
differences are implemented via division of every time step 
into Vmax sub-steps t0..tVmax. An i-th person tries to move at a 
sub-step k only if vi<k, where vi – his maximum speed. 

III. ANTICIPATING PEDESTRIANS 
Starting from the described above basic model, a 

pedestrian, capable of foreseeing the situation within his 
neighbourhood and accordingly optimizing his movement, 
may be generated. Further, a pedestrian possessing this 
property will be referred to as anticipating pedestrian.  

As it was mentioned above, at every step a person 
determines probabilities of shift (Рk, k=1,2,3,4). These are 
these values that may be subjected to influence of anticipation. 
Let’s assume, that pedestrians try to avoid collisions, i.e. a 
person tries not to move into a particular cell of his 
neighbourhood if (as he predicts) it will be occupied by 
another person at the next time step. This may be achieved by 
changing the probabilities in the following manner: 

 )1( ,occkkk PPP ⋅−⋅→ α , (1) 

where α – free parameter expressing influence of anticipation, 
Рk,occ – probability of occupation of k-th cell in the 
neighborhood by one of the neighbors. It is quite natural, that 
values Рk have to be normalized, so that their sum =1 (if at 
least one of them >0). It should be mentioned, that in this case 
all the pedestrians are assumed to have equal rights. If α is set 
to 1, a situation, when two pedestrians attempt to let each 
other move and stand still, may occur. Such deadlocks can be 
completely excluded only by selecting the value of α less then 
1, however, the number of them can also be minimized by 
granting certain (e.g. fast-moving) pedestrians privileges. In 
this case the shift probabilities will be transformed into: 
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It means that the fastest pedestrians do not take care of 
others, while slowly moving ones try to make way for those 
moving faster. By using in (2) a somewhat greater value 
instead of vmax, the fastest pedestrians may be forced to be 
more “polite”. 

As it was shown above, anticipation is closely related to 
ability of foreseeing the system state, so the issue of how do 
the pedestrians predict (in other words, how do they compute 

Pk,occ) remains open. Two variants were considered: 
observation- and model-based prediction. The first variant is 
based upon the assumption that pedestrians preserve direction 
of their movement. So, Pk,occ may be considered to be a linear 
function of the number of pedestrians “looking” at the k-th cell 
(the direction of their look is defined by the direction of their 
previous shift): 

 
M
mP occk =, , (3) 

where m – number of pedestrians “looking” at k-th cell; M = 
<number of cells in the neighborhood>-1, in our case M = 3. 
Such an approach, though being the most simple and natural, 
is, at the same time, the least accurate. Thus, for the sake of 
comparison, the second approach was considered, according to 
which a target pedestrian for every cell of his neighborhood 
computes Pk of its neighbors (excluding himself) and the 
resulting probability is defined as follows: 
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It is quite evident that this approach allows more accurate 
evaluation of Pk,occ, while being somewhat unnatural, as every 
pedestrian must know behavioral models of the others. 
A number of experiments were held and typical performance 
of all the mentioned configurations of the model is given 
below (Fig. 2). 

The results of simulation reveal the fact, that granting fast-
moving pedestrians a priority results in greater overall 
evacuation time, thus making little sense. On the other hand, 
the more accurately Pk,occ are computed, the better the 
performance. This proves the consistency of the proposed 
method of anticipation accounting (given by (1)). 

Figure 2. Performance of different configurations of anticipating 
pedestrians’ model. (Е/Р – equality/priority of fast-moving pedestrians; 

О/М – observation-/model-based prediction). 

1470

1520

1570

1620

0.00 0.25 0.50 0.75 1.00

Influence of anticipation

Ev
ac

ua
tio

n 
tim

e 
(s

te
ps

)

E,O P,O E,M P,M



IV. SPATIAL “DE-LOCALIZATION” 
In the previous section an anticipating pedestrian was 

generating his prediction based on non-anticipating model of 
his neighbors. Thus, it is quite straightforward to make his 
prediction more accurate by involving an anticipating model 
of neighbors. For that, every pedestrian (within the 
neighborhood of radius 2) is subjected to the procedure 
described in section 3 for target pedestrian: calculation of Pk, 
calculation of Pk,occ (4) and correction of Pk (1). It is evident, 
that in this case cells lying at a distance of 3 from the target 
pedestrian (center of the neighborhood) are involved in 
evaluation of Pk,occ. At the same time, pedestrians standing 2 
cells apart from the center used non-anticipating model of 
their neighbors (standing 3 cells apart from the center). If they 
have used anticipating model instead, pedestrians standing 4 
cells apart from the center of the neighborhood would have 
become involved. Thus, a neighborhood is growing until it 
“covers” the entire scene (Fig. 3). 

It is clear that this process of neighborhood growth must be 
interrupted at a certain step, because of two reasons (theoretic 
and computational): 

• every next step destroys spatial localization of the 
model, thus contradicting the hypothesis of local 
information (a pedestrian does not know what is 
happening beyond his neighborhood); 

• growth of the neighborhood makes the model more 
computationally intensive. 

Time-cost of calculation of probabilities Pk for one 
pedestrian is defined by the number of cells in his (extended) 
neighborhood. In our case (4-cell elementary neighborhood) 
this number makes up: 

 222 ~1)1( rrr −++ , (5) 

where r – radius of an extended neighborhood.  
So, this radius should be limited by a certain value, 

through which different extent of information distribution may 
be simulated. From a point of view of the target pedestrian, 
this may be given the following interpretation: all the 
neighbors inside the extended neighborhood are considered to 
be anticipating, unlike those standing on a border. On the 
other hand, pedestrians on a border may be also considered to 
be anticipating under an assumption that there are no 

pedestrians beyond the neighborhood (in this case for these 
pedestrians holds Pk,occ = 0). 

The described above scheme may be implemented via the 
following algorithm: 

 
<neighborhood initialization:  
neighborhood of radius r around the target pedestrian is filled 
with data from the corresponding area of the CA field> 
repeat N times 
{ 
 for (all empty cells){ 
  calculate Pk,occ: 
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 } 
 for (all pedestrians){ 
  correction of Pk: 
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 } 
} 

 
It is quite straightforward, that if r=2 and N=1 we have the 

model described in section 3 (lowest curve in Fig.2), if r>2 
with growing N distant pedestrians start affecting each other, 
however this influence decreases exponentially with distance. 
On the other hand, a problem of finding optimal value of N 
emerges. It is evident, that values less than [(r+1)/2] make no 
sense, as information spreads with a “speed” of 2 cells per 
iteration and cells beyond radius of 2N are simply excluded 
from consideration. Also, growing N increases the time-cost of 
the model (linearly). So, there are two major questions to be 
answered: 

1) will the further growth of N positively affect 
pedestrians’ performance; 

2) is there an optimal value of N that provides minimum 
evacuation time. 

In order to answer these questions numerous simulations 
were held. First of all, we have found that growth of N has a 
positive effect on the model performance, as it decreases the 
overall evacuation time (see Fig. 4). However, the slope of the 
curve decreases in exponential fashion, so, on one hand, there 
is no definite optimal value (or interval) for this parameter. On 
the other hand, interval 5..7 seems for practical purposes 
optimal as further growth of N has little effect. 

Secondly, a typical relation between optimal values of α 
and N was discovered (see Fig. 5). 

Figure 3. Growth of the neighborhood inducted by anticipating 
model. 



V. CONCLUSIONS 
In this paper we have incorporated an anticipation property 

into a CA-based model of pedestrian traffic. It was 
demonstrated, how this property may be simulated via quite a 
simple mechanism and what impact it has on the overall 
performance of the crowd of pedestrians. The one inherent 
feature of anticipation is a requirement for additional 
information, based on which a pedestrian tries to optimize his 
trajectory. As pedestrians move in space, they need to have an 
idea about what obstacles they will face further on their way. 
Thus, a need of additional space-related information and, 
therefore, certain spatial de-localization occurs. In our case, a 
pedestrian was provided with relevant information via 
extension of his neighborhood. We have tried providing a 
pedestrian with another type of information – knowledge 
about the model of behavior of others. Though not being 
critical within the described framework, this additional 
information improved the performance of the crowd. 
The approach described allows simulating an arbitrary extent 
of spatial information distribution by varying the radius of 
extended neighborhood. At the same time, the model remains 

localized in time and pedestrians do not make a full use of the 
additional information they were given. So, the next step in 
construction of realistic models is implementation of temporal 
de-localization by granting pedestrians an ability to construct 
multi-step predictions. However, it is a matter of further 
research. 
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Figure 4. Evacuation time for different values of N. Every data 
point is obtained for optimal value of α, that depends on N. 

Evacuation time is given in relative scale with 1.0 corresponding 
to 150 time steps. 
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Figure 5. Evacuation time for different values of α and N. Scale is 
the same as in Fig. 4. 
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