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Abstract— This paper is dedicated to the cumulant
analysis of the Rössler attractor, based on the so-called
“degenerate cumulant equations” method. The approach
is ilustrated by the calculus of the first cumulants, which
are necessary to create an approximation of the probability
density function (PDF), applying the Gramm-Charlier
series, the model distribution method, etc. An approximate
method for the variance calculation at the output of the
Rössler strange attractor is shown. The latter is based
on the Kolmogorov-Sinai entropy that is defined by the
Lyapunov exponents for a statistically linearized chaotic
system and by the differential Kolmogorov entropy.

Index Terms— Cumulants, cumulant brackets, attractor,
kurtosis, variance, Kolmogorov-Sinai entropy.

I. I

Nowadays, the number of chaos applications has
grown considerably [1], but there are still a lack of
the effective tools for the statistical analysis of the
chaotic behavior for strange attractors, particularly in the
electrical engineering field.

Recently it was proposed a so-called “degenerate
cumulant equations method” [2-4] for applied statistical
analysis of the strange attractors, based on the parameters
of the corresponding dynamic systems1. It was shown [2-
4], that by means of the proposed approach not only the
expressions for the cumulants can be found, but also the
so-called “model distributions” for each component of
the attractors under analysis, etc.

The “attractive” features of the cumulants (instead of
moments) for engineering purposes was explained in
detail at [3], [5] and also a comprehensive and adequate
method for tha cumulant calculus was presented: the
cumulant brackets.

Note, that the “weight” of cumulants diminish as its
order grows [5], so for engineering analysis it is sufficient
to consider only the first four cumulants: χ1 − χ4, and

This work was supported by Intel C. through the grant “Intel-VK”
1Certainly, all statistical properties of the attractor can be obtained

through statistical computer simulation, but it is not the case here.

corresponding shape coefficients for PDF: γ3 is the
asymmetry coefficient and γ4 is the kurtosis coefficient
[5].

It was also shown recently, that chaotic models are
adequate to model several natural phenomena, related to
the communication field. For example, output signals of
some components of the well known attractors: Lorenz,
Chua, etc, can successfully describe the PDF’s of the
interferences from some digital interconnects, and the
cumulant analysis provides a very good coincidence with
the measurement data.

The improvement of the characteristics of the modern
digital communications from mobile to mobile PC’s
users, etc is so important, that it is highly encouraging to
continue with the statistical research of other attractors,
for example, Rössler attractor.

It is worth to notice here, that any cumulant analysis
of the dynamic system is not only qualitative, but also
quantitative.

As it was stated from the very beginning of its
applications, the cumulant method presents a “general
view” of the statistical system behavior due to system
parameters [6], [7].

As it follows from the title, this paper is dedicated
to the cumulant analysis of the Rössler attractor from
the engineering point of view. The paper is organized as
follows. Section II contains the basics of the degenerate
cumulant method and the concept of cumulant brackets.
Section III is dedicated to the analytical cumulant anal-
ysis of the Rössler attractor. In section IV some of the
numerical results for Rössler attractor, their comparison
with analytical predictions and the concept of equations
for cumulants and cumulants brackets are presented.
Section V presents the analytical approximate method for
the variance evaluation of the Rössler attractor. Section
VI is dedicated to some comments to the section V.
Conclusions are presented in section VII.
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II. D  

It is well known [8], that each dissipative continuous
time dynamic system (strange attractor) can be defined
with the following equation:

ẋ = f(x(t)), x ∈ Rn, x(t0) = x0 , (1)

where f(· ) = [ f1(x), . . . , fn(x)]T is a differentiable vector
function.

Following the principles for the ergodic theory of the
equation (1) [8], one has to annex the external weak
noise at (1) (idea of Kolmogorov) in order to obtain the
meaningful concept for the physical measure of x(t) −
Wst(x). Wst(x)− is a stationary PDF for x(t) (see details
in [8] and in [3], [4] as well).

Note, that Wst(x), as well as its characteristic function,
is totally defined by the complete set of cumulants [5].

Let us consider in the following only the one dimen-
sional PDF Wst(x) as:

Wst(x) = F−1{θm( jf)} ,

θ( jf) = exp{
∑∞

s=1
( jf)s

s! χs}
(2)

where χs is the cumulant of the s − th order.
If one assumes that cumulants for all s > m are equal

to zero, then for the finite set of cumulants {χs}
m
1 , we can

introduce the “model distribution” Ŵst(x) of the m − th
order and its characteristic function is defined by θm( jf).

It is clear that F{· } and F−1{·} are direct and inverse
Fourier transforms respectively.

The distribution Ŵst(x) is only an approximation of
the true PDF and the model distributions ( [11], and
references therein) provide an accuracy, better than the
orthogonal series expansions for the case γ4 < 0, and
can also be applied for γ4 > 0.

Another option for analytical approximation are
the orthogonal representations, for example, Gramm-
Charlier, Laguerre series, etc. [5]. For example, the
Gramm-Charlier series are defined by:

W(x) = WG(x)[1 +
γ3

3!
H3(x) +

γ4

4!
H4(x)], (3)

where

Hn(x) = (−1)nexp(
x2

2
)

dn

dxn exp{−
x2

2
};

Hn(·) is a Hermitian polynomial of n-order,

WG(x) =
1
√

2π
exp{

−x2

2
}

is a Gaussian distribution,

γ3 =
χ3

σ3

is the skewness coefficient and

γ4 =
χ4

σ4

is the kurtosis coefficient.
It is important to mention that for a symmetrical PDF

the above coefficients satisfy:

γ3 = 0, µ3 = χ3, µ4 = χ4 + 3(σ2)2

with χ3 and χ4 being the third and fourth cumulants;
γ4 ≥ −2.

Now (1) can be rewritten in the form of the stochastic
differential equation (SDE):

ẋ = f(x(t)) + εξ(t) , (4)

where ξ(t) is a vector of a weak external white noise
with the related positive defined matrix of “intensities”
ε = [εi j]nxn, [3], [5].

In other words x(t) is a continuous n-dimensional
Markov process with kinetic coefficients, given by
K1i(x) = fi(x) and K2 = [εi j]nxn,2 [3], [5].

For the SDE representation of the attractor the ap-
proach, named as cumulant equations for the SDE with
the given K1i(x) and K2 [5], can be successfully applied.

For the moment we assume (as it was proposed
above), that Wst(x) exists, and that it is a reasonable
physical measure for (1) and (4) [13]; although there ex-
ists all cumulants that adequately represent Wst(x). Those
cumulants can be found from the following equations for
the stationary cumulants (the interested reader can find
all necessary developments in details and with examples
at [5, ch. 4]):

〈Ki j(x)〉 = 0,
2{〈xi,K1i(x)〉}s + 〈K2i j〉 = 0,

3{〈xi, x j,K1β(x)〉}s + 3{〈x1,K2 jβ〉}s = 0,
...∑n

l=1 Cl
n[{〈x1, x2, . . . , xn−l,K1n−l+1(x)〉}s . . .

+〈x1, x2, . . . , xn−l,K2n−l+1,l〉 = 0]

(5)

where i , j, β = 1, n.
We can evidently see from (5), that if ∀εi j → 0,

then the second summand in (5) tends to zero and
the equations in (5) tend to the so-called “degenerate
cumulant equations”.

Hence, the degenerate cumulant equations have the
following form:

2Here we apply the definition for kinetic coefficients in
Stratonovich form.



3

〈K1i(x)〉 = 0,

2{〈xi,K1 j(x)〉}s = 0, (6)

3{〈xi, x j,K1β(x)〉}s = 0,
...

where i, j, β = 1, n, and 〈xi, x j, . . . , xβ〉 are the so-called
“cumulant brackets” - abbreviated representation for any
cumulant [5].

A{x, y, . . . , z}s is an abbreviation of the Stratonovich
symmetrization brackets (A is an integer) and represents
the sum of all possible permutations in times of the
arguments inside the brackets [5] (see Appendix).

Essentially equations (5) and (6) represent a set of
non-linear algebraic equations and this set, in general,
is not closed, but it is always possible to cut the set of
cumulants by neglecting all cumulants with order s > m.

The equations (6) have to be sequentially solved first
for each component of x = [x1, x2, . . . , xn]T (first line);
next for couples of components {xi, x j}

n
i, j=1 (second line),

and then for triplets {xi, x j, xβ}ni, j,β=1 (third line), etc.
The way to do it is to “open” the cumulant brackets

as shown in Appendix A2 at chapter 4 at [5].
To illustrate the procedure described above, we apply

this material to the analysis of the Rössler attractor.

III. R̈ 
Equation (1) for Rössler attractor has the following

form:

ẋ = −y − z

ẏ = x + ay (7)

ż = b + zx − zc

where a, b, c are the parameters of the attractor, x =

[x, y, z]T .
Thus, the first kinetic coefficients for (6) are:

K1,1(x) = −y − z

K1,2(x) = x + ay (8)

K1,3(x) = b + zx − zc.

Introducing (7) and (8) into (6) for the first component
“x”, one gets:

χ
y
1 = 〈y〉 = −〈z〉 = −χz

1

χx,z
1,1 = −χ

x,y
1,1

χ
x,y
2,y = −χx,z

2,1

χ
x,y
3,1 = −χx,z

3,1

χ
x,y
4,1 = −χx,z

4,1


(9)

For the second component “y”:

χx
1 = 〈x〉 = −a〈y〉 = −aχy

1

χ
y
2 = −

1
a
χ

x,y
1,1

χ
y
3 = −

1
a
χ

y,x
2,1

χ
y
4 = −

1
a
χ

y,x
3,1


(10)

For the third component “z”:

χx,z
1,1 = χz,x

1,1 = c〈z〉 = −〈z〉〈x〉

χ
y
2 =

c〈z〉 − a〈z〉2

a

 (11)

Then, going on with two components {x, y}, one
can get: χy

3 =
2χy,x

1,2

1+a , 0, i.e PDF of y(t) is asymmetrical.
With two components {x, z} it follows: χz

3 , 0, i.e
PDF of z(t) is asymmetrical as well, and

χ
y
2 =

χx
2

〈z〉
(12)

Please note, that notations for cumulants described
in this section are considered in the Appendix.

In the same way all necessary cumulants of the higher
order can be found.

IV. N R  

The results were obtained using Matlab. It is pretty
simple to carry out numerical simulations of any strange
attractor, especially Rössler attractor, and find all the
cumulants (moments) necessary to make analytical ap-
proximation of the PDF for each component, etc.

Let us consider the results of simulations of the
Rössler attractor with the following parameters: a = 0.2,
b = 0.2, c = 5.7 [6], [7].

Note, that obviously each component of the attractor
achieves its stationary conditions with different time
constant. At this step of the research it was empirically
found (from simulations), that the “x” components reach
their stationary state faster than “y and z” components.
Therefore for comparison with the analytical results it is
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reasonable to apply data from the simulations, when the
PDF’s clearly achieve their stable shapes.

Keeping this in mind, let us make brief comparisons
between analytical and simulation results. Based on the
analytical results, which were presented in section II,
we’ll consider mainly the comparisons of the first two
cumulants, as they are very important for practice.

From simulations it was found:

〈x〉 = 0.17, 〈y〉 = −0.76, 〈z〉 = 0.75.

One can see from (9) and (10) an almost exact coinci-
dence with theory.

It is important to mention that all the components of
the Rössler attractor are normalized before realizing the
calculations.

Then, from (11) it follows, χy
2 = 17.8 and simulation

gives χy
2 = 18.9 (error is about 5.8%).

From (10) 〈x〉 = 0.13 and |〈x〉| < 〈y〉|: and 〈x〉 =

0.17, from (12) it comes: when χx
2 = 13.3, χy

2 = 17.8
(simulation gives almost the same.)

Both PDF’s for components “y” and “z” are not
symmetrical. From (10) it follows, that PDF’s for “x”
and “y” are oppositely asymmetric, in contrary to Lorenz
attractor (see [3]).

It can be seen, that besides of a good accuracy of
the analytical prediction for cumulants, for complete
calculus of the cumulants it is mandatory to provide
the calculus of the variances: χx

2, χ
y
2, χ

z
2, as high order

cumulants depend to them.
In Figure (1-3) are represented the histograms for

PDF’s of the “x”, “y” and “z” components of the Rössler
attractor.
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Fig. 1. “x” component of the Rössler attractor
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Fig. 2. “y” component of the Rössler attractor
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Fig. 3. “z” component of the Rössler attractor

One can see, that the components “x” and “y” are “op-
positely” symmetric (see also (8)), and have unimodal
PDF’S with γ4 > 0, i.e. the vertices of the distributions
are “sharper”, than the Gaussian ones.

We can see that the component z can be approximated
by means of a delta- function.

For “x” and “y” components we describe the PDF
histograms by means of the Laplace distribution defined
by:

f (x) =
1

2λ
exp{−

|x − µ|
λ
}.
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This distribution is characterized by location µ (any
real number) and scale λ (has to be greater than a 0)
parameters. The use of Laplace distribution allows to
make a right description for the “x” component and “y”
components of the Rössler attractor as it is observed in
Figures 4 and 5.
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Fig. 4. “x” component of the Rössler attractor
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Fig. 5. “y” component of the Rössler attractor

Then, as it follows from Figures 4 and 5, the (PDF),
for the “x” component of the Rössler attractor is ap-
proximated by a Laplace distribution with the local
parameter µ = 0 and scale parameter λ = 1.1 and for
the “y” component with local parameter µ = 0 and scale
parameter λ = 0.85.
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Fig. 6. CDF of the “x” component using the Laplace approximation

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

C
D

F
CDF of experimental data
Laplace approximation  for PDF.

Fig. 7. CDF of the “y” component using the Laplace approximation

In Figures 6 and 7, we apply the Kolmogorov-
Smirnoff goodness of fit test with a significance level
α = 0.05, in order to examine whether the accuracy
of the PDF of the “x” and “y” components of the
Rössler attractor and its approximation using the Laplace
distribution are adequate or not. As it can be seen from
the figures 6 and 7, the approximation can be considered
as aceptable.

In Figures 8 and 9, the results of the approximation of
the PDF for the “x” and “y” components of the Rössler
attractor by means of the Gramm-Charlier series and the
model distribution (2) (both withγ2 > 0,) are represented.

One can see, that, as it was commented before, the
Gramm-Charlier approximation is more precise, than the
expression (2), because of γ2 > 0.
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Fig. 8. The “x” component of the Rössler attractor with the Laplace
and model distribution approximations.
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Fig. 9. The “y” component of the Rössler attractor with the Laplace
and model distribution approximations.

V. A  V C

By considering the results presented in previous sec-
tions we realize that the approximations obtained by
applying the cumulant method are really good.

As it is emphasized above, the first four cumulants
for the Rössler attractor depend on the evaluation of the
variance χ2 that is based on the Kolmogorov-Sinai Hk−s

entropy.3 The Hk−s entropy is defined by the sum of the
Lyapunov exponents for a non-linear system [9, page

3Considering that K-S entropy can’t be exactly calculated, it is
impossible by using this method to obtain an exact result for variance.
Nevertheless, assuming that for practical purposes an error about 10-
20% is acceptable, we are able to apply this method.

122]. For a linear matrix the Lyapunov exponents are
defined by its eigen-values [9, pages 542-543].

In the proposed methodology we compare the dif-
ferential entropy obtained from the PDF approximation
for a component of the Rössler attractor, with the Hk−s

entropy computed through the parameters of the attractor
(Lyapunov exponents).

Note, (see in the following) that in the framework
of this analysis Hk−s coincides with the Kolmogorov
differential entropy of the PDF [9, pages 542-543, 839].

The proposed methodology can be summarized as
follows.

1) The non-linear system describing the chaotic be-
havior of the Rössler attractor has to be statistically
linearized [9, p 760].

2) The eigen-values must be found from the coeffi-
cients matrix formed by the linearized system.

3) Once the eigen-values have been obtained, the
Hk−s for the dynamic system can be estimated as
follows:

log|λmax| < Hk−s ≤

m∑
j=1

log|λ j|, (13)

where, j = 1,m, λ j - is the j − th eingen-value of
the linear matrix and log|λ j| - is the j−th Lyapunov
exponent for the linear matrix [9, p 542].

4) On the other hand the Kolmogorov differential
entropy is:

hdi f = −

∫ −∞

∞

W(x)log[W(x)]dx, (14)

where W(x) is the PDF of the ouput signals whose
parameters have to be represented through χ2.

5) Then, we create an algebraic equation depending
on the variance according to steps 3 and 4.

6) Solving equation from steps 3 and 4, we can have
now a solution for variance.

It is worth mentioning, that as the whole Kolmogorov-
Sinai entropy is addressed to the given component of
the Rössler attractor the value of the variance obtained
from the approach is actually its upper bound. The lower
bound can be found applying the left hand side of the
inequality (12).

Here we present the results of the application of this
method for the Rössler attractor considering only the x
component. From equation (5) we can obtain a linearized
system as it was mentioned in step 1. From step 2, we
obtain the coefficient matrix A of this linearized system
as:
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A =

∣∣∣∣∣∣∣∣
0 −1 −1
1 a 0
0 0 −c

∣∣∣∣∣∣∣∣
Matrix A has a determinant different from zero, for

this reason we can obtain eingen-values, considering a =

0.2 and c = 5.7. The characteristic equation becomes:

λ3 − (a − c)λ2 − (ac − 1)λ + c = 0,

where λ1 = −5.7, λ2 = 0.1 + j and λ3 = 0.1 − j.
Note, that the main eigen-value λ1 is equal to the

parameter c.
Having the results for the eigen-values, and substitut-

ing λ1 into (12), we can obtain a numeric value for the
entropy as Hk−s ≈ 1.74.
And for steps 3 and 6 it follows:

χx
2 =

exp(3.48)
2e2 = 2.1.

From the Fig. 4 it follows, that χx
2 ≈ 2 and the error is

5%.

A. Some Modifications

In the previous material it was assumed that the
parameters of the Rössler strange attractor are predefined
as well as the PDF’s for the output signals.

Here we’ll consider a more general case. Let us
suppose, that the set of parameters of the strange attractor
and the PDF’s are not predefined, but the chaotic regime
of the attractors is established.

Then one can apply for the PDF choice the so-called
“Maximun Entropy Method (MEM)” [10]. If the attractor
of interest can be characterized by the symmetric PDF’s,
then it can be applied as a MEM distribution Gaussian
PDF.

From the MEM principle it follows, that for the given
Hk−s for Gaussian PDF, the evaluated χ2 has to be a
lower boundary for its true value.

As it was mentioned before if one of the positive
Lyapunov exponents predominates it is possible to apply
for the lower boundary for χ2 the inequality Hk−s >
log|λmax|. If all values for positive Lyapunov exponents
are comparable, then for the lower boundary evaluation
it is possible to assume 1

3 Hk−s ≤
∑

i log|λi|, if the strange
attractor consists of three equations and we assume that
all components are statistically independient.

It follows from (12), that the variance χ2 obeys the
following inequality:

χ2 ≥
102Hk−s

2πe
(15)

For the Rössler attractor χx
2 ≥ 1.8 (true value is 2)

VI. S     V

The material of the section V shows that through
the ordinary equations of strange attractors and their
statistical linearization it is possible to obtain analytical
estimations of the Lyapunov exponents of the non-linear
dissipative system describing the attractor. After the
Lyapunov exponents are found it is possible to get a well
known approximation for the Kolmogorov-Sinai entropy
Hk−s.

On the other side, applying the attractors PDF’s for
the components of interest (from computer simulations)
together with its analytical approximation, it is possible
to find the Kolmogorov differential entropy (hdi f ) wich
practically coincides with Hk−s for the strange attrac-
tors under consideration. Finally, by solving a simple
quadratic algebraic equation one can find χ2 ≥ 0.

The approach shows acceptable accuracy for engineer-
ing evaluation of χ2 (less than 20%) and it is completely
analytical. Why it happened?

This means that it has to depend on the details of the
stochastic set, dimension of the phase space, etc. (see
[9,12], etc. for details) of the attractor.

For example if the dimension of the stochastic set
D for the strange attractor is more that two, almost all
phase trajectories, that constitute the strange attractor are
localized in a very thin layer, i.e. it can be approximately
represented by a one dimensional Poincare mapping
(details can be found in [12]). It is actually true for Chua,
Lorenz, Rössler etc. strange attractors as well (see [12],
[14], etc).

So, any non-linear dissipative system with a dimension
D equal or more than two represents a one-dimensional
Poincare mapping (one dimensional dynamics) and one
of the consequences of this is the similarity between Hk−s

and the Kolmogorov differential entropy. Therefore, the
acceptable accuracy of the proposed approach might be,
in some sense, predicted.

Next, please, note that the dependence of χx
2 on

the parameters of the strange attractors (even in the
framework of the predefined chaotic regime) is not trivial
and it depends on the attractor’s type. As it was shown
above, the χx

2 for the Rossler attractor clearly shows the
dependence on the unique parameter c (see also [10]).

VII. C

1) A rather simple method for statistical analysis of
the Rössler attractor, based on the “degenerate
cumulant equations” was presented.

2) It was shown, that application of the cumulant
analysis gives not only a qualitative picture of
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the stochastic behavior of the attractor, but also
a quantative evaluation for cumulants.

3) Cumulants can be useful to obtain an approxima-
tion of the plot of PDF’s of output signals for
Rössler attractor.

4) The solution for variance for Rössler strange at-
tractors presented in Section V results to be ap-
propriate as a prediction for this parameter. The
error in the calculation is considered permissible
in the estimation approach as well.
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A

The concept of cumulant brackets was introduced as
an abbreviated representation for any cumulant, i.e.

χ
ξ1,ξ2,...,ξn
m1,m2,...,mn = 〈ξ1, . . . , ξ2︸     ︷︷     ︸, ξ2, . . . , ξ2︸     ︷︷     ︸, . . . ,
ξn, . . . , ξn︸     ︷︷     ︸〉 ≡ 〈ξ[m1]

1 , ξ[m2]
2 , . . . , ξ[mn]

n 〉 ;
(16)

where ξ1 appears inside the brackets m1 times, ξ2

appears m2 times, and so on; for example, the third
cumulant is Kξ1,ξ2

1,2 = 〈ξ1, ξ2, ξ2〉. Some useful features
for cumulant brackets can be found in [5,11].

The relations between moments and cumulants as well
as the relations between moment and cumulant brackets
were discussed in a exhaustive way in [5,11]; the fact
that by means of cumulants brackets it is possible to
formalize the operations between random variables and
their transformations (linear and nonlinear, inertial and
non-inertial), in a easy way, was presented in [11] (see
also [5] for some generalizations).

For the above presented material some features for
cumulant brackets need to be taken into account [5,11]:

1) 〈ξ, η, . . . , ω〉 is a symmetric function of its argu-
ments.

2) 〈aξ, bη, . . . , gω〉 = a · b · · · · · g〈ξ, η, . . . , ω〉, where
a, b, . . . , g are constants.

3) 〈ξ, η, . . . , θ1 + θ2, . . . , ω〉 = 〈ξ, η, . . . , θ1, . . . , ω〉 +

〈ξ, η, . . . , θ2, . . . , ω〉.
4) 〈ξ, η, . . . , θ, . . . , ω〉 = 0, if θ is independent of
{ξ,η, . . . , ω}.

5) 〈ξ, η, . . . , a, . . . , ω〉 = 0.
6) 〈ξ + a, η + b, . . . , ω + g〉 = 〈ξ, η, . . . , ω〉.
In addition to cumulant brackets it is necessary to

introduce here the concept of Stratonovich symmetriza-
tion brackets: symmetrization brackets together with the

integer number in front of the brackets represent the
sum of all possible permutations of the arguments inside
the brackets. For example, the operator 3{〈ξ1〉 · 〈ξ2, ξ3〉}s

means that

3{〈ξ1〉 · 〈ξ2, ξ3〉}s = 〈ξ1〉 · 〈ξ2, ξ3〉 . . .
+〈ξ2〉 · 〈ξ1, ξ3〉 + 〈ξ3〉 · 〈ξ1, ξ2〉 ,

(17)

where {}s is the notation for the Stratonovich sym-
metrization brackets. Rules for manipulations with cu-
mulant brackets can be found in A2[5].

The relations between moments and cumulants for the
same distribution W(x) are well known (see, for instance,
references [5,11]).

The following notation is also quite known: 〈g(x)〉,
〈ξ1· ξ2〉, which denotes the operator of statistical average
for g(x) and for the product of two random variables ξ1

and ξ2, respectively.
Following [5] we call this operator 〈·〉 as moment

brackets. The formal difference between moment and
cumulant brackets is, that the first one contains a ‘dot’
between random variables (usually it is skipped), and the
second one contains a ‘comma’ between variables.
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