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Abstract— We provide results comparing two new methods
based on different embedding space approaches to infer direc-
tional interdependence between bivariate time series, such as
the transition to synchronisation. Both methods share a common
identification stage which models the underlying generatorof
each single observable data. This consists of two parts: state space
reconstruction, and local model fitting using a class of kernel
density estimation methods which is an extension of Lorenz
Analogues techniques. The mutual information derived from
the density estimation is used to compare the two approaches
and is tested on coupled dynamical systems for which the
interdependence is controlled.

I. I NTRODUCTION

Identifying dynamical directional interdependence among
multivariate time series is an important problem in many
scientific fields such as engineering, econometrics, biology and
biomedical analysis. Generally, the mathematical formulation
of the underlying generator of the observed signals is not
known a priori and their coupling needs to be inferred using
observational data. This latent generator can be represented by
a composite interplay of many subsystems which can result in
a global complex collective behaviour. Instead of the complete
statistical description of hidden systems, it can be sufficient to
estimate information about the relationship between observed
signals. An accurate analysis of these relationships can bring
about useful inference regarding the hidden connections inside
the underlying generator.

The nonlinearity of the system is a further complication
which is common in nature and can make the generator
dynamics more difficult to analyse. Linear tools such as
correlation or Fourier analysis have limitations for uncover-
ing nonlinear couplings. Instead, in the literature, nonlinear
interdependence concepts such as causality or synchronisation
are being used to construct a framework which, in this work,
we use as the motivational background for our study.

Causality has been the subject of debate due to different
views around its nature and interpretation. While an empirical
idea of cause and effect is relatively easy to comprehend, its
practical translation can lead to an algorithmic representation
providing many issues (see [1] for a discussion). Granger [2]

based on ideas from Wiener, studied a particular class of linear
stochastic systems where a plausible definition of causality
proposed a statistical framework of analysis. Given two ob-
servable time seriesx andy from systemsX andY, if a k-step
ahead predictor ofxi using the past observable ofxi and yi

together increases the predictability likelihood over a predictor
using only xi, than we can say thatY and X are causally
related. Depending on the flow of information in predicting
Y from X or X from Y allows us to infer directionality of
coupling. From a different point of view, we can express the
same concept in a probabilistic way,

If P (xi+k|x
−
i , y−

i ) 6= P (xi+k|x
−
i ) Y causesX (1)

wherex−
i and y−

i are the past time series of the systems
prior to the timei and xi+k is the k-step ahead predictor.
Using a linear stochastic system, a totally admissible algo-
rithmic choice [2] which has been largely used, based on
(1) uses the conditional variance of the prediction error, i.e.,
σ(xi+k|x

−
i , y−

i ) and σ(xi+k|x
−
i ). The Granger implementa-

tion was based on ARMA modelling and has been employed
in many data analysis domains, including, econometrics [3]
[4] and recently neuroscience [5]. Since for a linear system
the autocorrelation and Fourier spectrum are related by the
Wiener-Khinchin theorem, we can find implementations of
causality measures based on coherence [2]. Recent studies
have addressed the nonlinear analysis issue using an ex-
tension of Granger causality based on nonlinear predictor
modelling [6], [7], [8]. Other approaches using entropy (for
a review see [9]) have been developed. In [10] (1) has been
called the measure of deviance from the Markov property
which leads to the concept of Transfer Entropy.

Most of the methods we have listed above for causality
discovery containing nonlinear systems make use of a prepro-
cessing stage based on State Space Reconstruction [11]. This
approach has become a popular solution in order to learn the
underlying dynamical structure which generates the observable
time series. We use this technique in this paper to build the



reconstructed state space in which we run the modified Lorenz
analogues approaches.

Defining synchronisation has been less empirical due its
historical focus on periodic system such as relaxation os-
cillators in which phase contains the information needed to
infer interdependence and synchronisation. In the last two
decades, it has been shown [12] that chaotic systems can
identically synchronise and other levels of definition needed
to be introduced [13]. One of the reasons was the query
of how to define the phase of a chaotic signal. There are
different measures of synchronisation and we refer to the
literature [14], [15]. In this work, we focus on a class of
methods which are related to the concept ofGeneralised
Synchronisation [16]. Two systems are synchronised if it is
possible to find a smooth functionΨ which relates the two
state-spaces of the underlying generators ofX and Y, i.e.,
Y = Ψ(X), whereX andY are the state spaces ofX andY.
A set of possible measures of generalised synchronisation have
been explored using the concept of mutual neighbours in the
reconstructed or embedding state spaces which we denote here
as X̂ and Ŷ. In [17], the author projects the local structure
of one reconstructed state space, i.e.X̂, on the other, i.e.
Ŷ in order to search for generalised synchronisation. Other
similar measures can be found in [18] and [19] in which the
Synchronisation Likelihood is defined. In [20] the procedure of
mutual neighbours is used to build a simple nonlinear predictor
in state space.

In this paper, we compare two nonlinear approaches to
interdependence analysis motivated by a local nonlinear map-
ping version of the Lorenz method of analogues. The Lorenz
technique was originally a simple way to build a predictor
in the reconstructed space. We first consider here a novel
version of the Lorenz algorithm which uses a kernel density
estimation techniques in order to compensate nonlinearityof
the underlying generator of the data. This particular predictor
models the conditional distributions required in (1) whichwe
employ to check, using the deviation of the Markov property,
the information flow between the two time series generators.
In the second part, we investigate two possible ways we found
in literature, to obtain the joint information of the past sets x−

i

and y−
i on the left hand side of (1). The causality literature

suggests approaches based on joining the setsx−
i andy−

i ob-
taining a larger dimensionality setx−

i ⊕ y−
i based on a ‘direct

sum’ generator space. Instead, using an approach emphasized
for example in [20] [19], we use a method based on mutual
mappings between local neighbours in the two spaces which
we denote byP (xi+1|x

−
i , y−

i ) = P (xi+1|x
−
i ⋆ y−

i ) with ⋆ the
notation that we use to define the mutual neighbours mapping
operator, to be discussed later.

In the following section, we define the approach we use to
construct nonparametric predictors in embedding space using
the Lorenz method of analogues. We define in the second part
the mutual predictors using the two different approaches using
⊕, ⋆ operators. We employ a Granger like statistic to check
the deviance to the Markov property in (1) as our measure
of directed interdependence. We illustrate the approach using
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Fig. 1. The dynamics of the underlying generator described by the space
X are projected to the observable subspacex by the functionh(·). A space
Reconstruction algorithm uses the time series point inx to build an equivalent
spaceX̂ of X up to a diffeomorphic functionΦ(·).

synthetic examples where we have control over the coupling.

II. M ETHODS

A. Nonlinear modelling

We consider two finite dimensional dynamical systemsX
andY which describe our underlying generators of the data.
Using the state space representations in (2-3), we assume the
dynamics of the system is described by stochastic differential
equationsfX (·), fY(·) and the measure functionshX (·), hY(·)
which defines the observable time seriesxi andyi.

X =

{

Xi+1 = fX (Xi,Yi) + ξX
xi = hX (Xi) + νX

(2)

Y =

{

Yi+1 = fY(Yi,Xi) + ξY
yi = hY(Yi) + νY

(3)

where ξ and ν are general stochastic terms which we
consider additive and uncorrelated with each other. The ob-
servable time series are the quantities between which we want
to infer interdependence which we consider here to be one-
dimensional. As we introduced in the previous section, we use
the bold notation, i.e.X, to define a vector space while the
indexed bold one, i.e.Xi, to specify an element. The lower
notation, i.e.x, indicates the corresponding observable time
series.

We proceed to the nonlinear modelling ofx andy using a
two stage identification procedure. In the first part, we use a
State Space Reconstruction which we described (1). For each
time pointi of the time series, we construct anM -dimensional
space from the vectorŝXi = (xi, xi+τ , . . . , xi+(M−1)τ )

and Ŷi = (yi, yi+τ , . . . , yi+(M−1)τ ) where τ is the delay
parameter [21]. In order to simplify the analysis, in this
paper we assume that bothX and Y are embedded in the
same dimensionM and have common delayτ . For a linear
stochastic system, the dimension of the spacesX̂i andŶi are
related by the order of the model which can be retrieved for
autoregressive representations by the AIC criterion [22],for
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Fig. 2. Graphical comparison between the two approaches we use to extract the conditional joint distribution between the two reconstructed spaces.

instance. In nonlinear time series analysis, Takens [11] showed
that under the sufficient condition thatM ≥ D + 1, the space
X̂ and the space of the vectorsX are anembedding, i.e., they
are related by a diffeomorphic mapΦ. We have thatD is the
dimension of the limit set ofX or the attractor of (2-3).

The previous property leads to a useful fact for the purpose
of building a prediction model which we consider as the
second identification stage . The projection over the observable
spacex of the true joint distribution of the datap(X, x) can be
retrieved usingp(X̂, x) instead, thanks to the diffeomorphic
condition between̂X andX. In this work, we modelp(X̂, x)
(the same forp(Ŷ, y)) using a class of kernel density esti-
mation methods based on Parzen estimators from which we
can derive the following conditional expectation (see [23]for
details):

x̃i+k = E(x|X̂) =
N
∑

j=1

w(X̂i, X̂j)xj (4)

wherex̃i+k is thek-step ahead predictor of the time series
point x given by theN -nearest pointŝXj to X̂i. The kernel
function w(X̂i, X̂j) is imposed to satisfy the summation
constraint

∑N

j=1 w(X̂i, X̂j) = 1. If we choose the simplest

kernel function as a constant, i.e.,w(X̂i, X̂j) = 1/N , the
approach is equivalent to the well-knownLorenz method of
Analogues [21] or the zero-th order predictor [20].

A different choice of the kernelw(·, ·) can be used in
order to increase the performance and the complexity of the
predictor model. In this paper we continue with the Lorenz
method, since the main goal is the comparison between the
mutual predictors approaches defined by the operators⊕
and ⋆ which we describe in the next section. We leave the
performance analysis for causality discovery using different
kernels as future development.

The approach we describe is an example of amemory-
based method in the pattern recognition literature [23]. From
the technique we use to build the reconstructed space, we
have a one-to-one relationship between the spacesX̂ and

the observable spacex that can be considered as a database.
We further divided this database in two parts: a training
set and a test set. Normally, the training set is used to
learn the conditional probabilityp(X̂, x) using a minimization
algorithm which is then used on the test set to produce the
predicted valuẽx. Memory-based methods do not learn during
the training stage but at each new embedding vectorX̂i the
algorithm needs to find the neighbourŝXj and project the
neighbourhood structure on the correspond time series points
xj . Computationally, we have that memory based methods are
fast in training, since they require only to build the set, but
slow in prediction. In order to increase the performance of the
algorithm, we need to build the training set using an optimal
procedure. Algorithms which build the embedding space us-
ing K-D trees [24] can compute the neighbours problem in
O(Klog K) time compared to an unstructured solution. The
complexity of the neighbours problem isO(dK2) if we need to
compute the pairwise distance ofK embeddingd dimensional
vectors.
The analogues algorithm requires parameters to be tuned such
as the dimension of the embedding, the delay parameter and
the number of neighbours. Using a different kernel function
w(·, ·) could result in further parameters to choose. In the
literature [21], there are several procedures developed totune
the embedding parametersM and τ . In this work, since the
purpose of the predictor methods is not forecasting, but method
comparison, we can use the available test set to drive the
choice of the optimal parametrization of the algorithm. As
described in the results section, we collect the time seriesfor
an offline interdependence analysis. The test set is known a
priori and we consider aCross-Validation-Procedure to choose
the parameters which minimise the out-of-sample prediction
errors in this set. The choice of using the test set in order
to compute the prediction errors avoids the problem of model
overfitting of the training data. We define the prediction errors
asex, ey.



B. Mutual Predictors

Following (1) and the Granger paradigm, considering one
time series, i.e.x, we want to examine if the information
gained by incorporating the other time series, i.e.,y improves
the nonlinear predictability ofx. In the section above we
modelled the conditional distribution of the right hand side
of (1). In this part we are interested in devising a mutual
predictor ofx which takes into account the information of both
embedding spaceŝX,Ŷ in order to model the left hand side
of (1) and quantify the deviation from the Markov property.

As described in the introduction, in this paper we investigate
two different approaches to gather mutual information from
the reconstructed spaceŝX and Ŷ. The first one, which we
refer to as theJoint space approach is depicted in Fig. (2)
and it uses the direct sum spacêZ = X̂ ⊕ Ŷ where
zi = (xi, xi+τ , . . . , xi+(M−1)τ , yi, yi+τ , . . . , yi+(M−1)τ ) is a
double-dimensional concatenated embedding space. Using the
spaceẐ we model the conditional probabilitiesp(Ẑ, x) and
p(Ẑ, y) using the kernel analogues approach we discussed in
the previous section. This mutual predictor for the case of
p(Ẑ, x) assumes the following expression

(x̃|xy)i+k =
N
∑

j=1

w(Ẑi, Ẑj)xj (5)

whereẐj are theN -nearest neighbours of̂Zi.
For the second approach, theMutual neighbours approach,

we employ an alternative notation using the operatorX̂⋆Ŷ to
extract mutual information from the two reconstructed spaces
X̂ and Ŷ. Figure (2) depicts this approach. We consider the
embedding vector̂Xi at time pointi and we search for the
corresponding counterpart̂Yi in the partner space. We then
obtain theN -nearest neighbours of̂Yi in the partner space
and we gather the respective set of time points, i.e.Ŷ(j). We
choose the mutual set of neighbours back in the originalX̂

space corresponding to thêY-space neighbourŝY(j) and we
build the following mapping predictor

(x̃|xy)i+k =

N
∑

j=1

w(X̂i, X̂Ŷ(j))xŶ(j) (6)

As in the previous section, we compute for (6) and (5) the
k-th step prediction out-of-sample errors on the test set. We
denote this error asex|xy andey|xy, respectively.

From the construction of the algorithms, we emphasise that
the mutual neighbours approach is computationally faster than
the joint space approach. Joining the two spaces needs an ad-
ditional searching procedure for neighbours in the new higher
dimensional spacêZ. Instead, the mutual neighbours technique
can re-use the local structure which has been computed for
eachX̂ andŶ separately.

C. Interdependence Analysis

In the final step, we need to employ a measure of in-
terdependence which quantifies the deviation away from the
Markov property in (1). As discussed in the introduction, the

conditional probabilities are usually substituted by the vari-
ances of the prediction errors which in this case are estimated
from (4) and (5) or (6) for the conditional probabilities. This
choice is valid if we consider the system has been generated
by a linear stochastic component. In this work, we model the
underlying generator of the data using a local linear kernel
mapping which is consistent with this assumption.

The Granger literature, for example [3] [25], has largely
discussed different statistical significance tests in order to
check the difference between single and mutual predictability.
A comparison of significance tests can be found in [26]. In
this work we employ the following measure which has been
used in [6]:

Gy→x = ln

(

σ2
x

σ2
x|xy

)

. (7)

where σ2
x and σ2

x|xy
are respectively the variance of the

single and the mutual prediction errors. Similarly, we com-
pute the termGx→y using σ2

y and σ2
y|xy

to check for the
inverse link. A potential difference betweenGy→x and the
equivalentGx→y therefore provides a test for directionality
of the coupling which we define as thedifferential Granger
measure ∆G = Gx→y − Gy→x. In [7], the authors proposed
another index for bidirectional couplingD = c2−c1

c1+c2

where
c1 = σ2

x − σ2
x|xy

andc2 = σ2
y − σ2

y|xy
but we leave this index

for future comment.

III. R ESULTS

We consider two numerical experiments of nonlinear sys-
tems common in the literature to compare interdependence
behaviour. We consider here a quantitative study of the two
approaches introduced previously. During the simulation,we
discard the first104 synthetically generated samples (the
‘burn-in’ samples) and we divide the rest into20 sets of
1000 points. On each set we construct the models discussed
previously. We further partitioned each set into two subsets of
700 samples for the training and300 for the test procedures. In
the following discussion, we compute the mean and standard
deviation of the differential Granger measure∆G computed
over the20 sets for one-step ahead predictors.

A. Logistic map

We consider first a unidirectional coupled logistic map
which has been described in [7]:

X : xi+1 = axi(1 − xi) + sηi+1 (8)

Y : yi+1 = (1 − C)ayi(1 − yi) + Caxi(1 − xi) + sξi+1

(9)

whereη andξ are unit variance Gaussian distributed noise
ands controls the strength of the noise terms. The parameter
a = 3.8 has been chosen. The coupling can vary between
C = 0 and C = 0.5 for the noiseless case. In Fig (7), we
plot the synchronisation pattern for different coupling strengths
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Fig. 3. Synchronisation patternsx vs y for the noiseless coupled logistic
map for different values of couplingC. We notice perfect synchronisation for
C = 0.45

of the map. The case of identical (‘perfect’) synchronisation
occurs forC > 0.35, is evident in the figure.

In Fig (4), we consider the measure of∆G for the two
different embedding space treatments. For this particularmap
we perform a cross validation procedure and we chooseM =
1 and τ = 1. Moreover, we establish that two neighbours
are sufficient to build the optimal predictor model. Both of
the methods find directional interdependence fromY to X
without any particular difference in terms of value. In fact
in Fig. (4) the positive value of∆G indicates the direction
of the information flow fromY to X . Both measures fail to
find any directionality when the two systems are in perfect
synchronisation, which is intuitively correct. In this situation it
should be impossible to distinguish any directional information
flow between the systems.

We repeat the analysis for the coupled logistic map includ-
ing a nonzeros = 0.01 random noise contribution. This value
has been chosen so as not to distort the convergent evolution
of the systems in (8-9). In Fig (5) we do not have, as in
the previous case, perfect synchronisation but instead a ‘noisy
synchronisation’ forC = 0.45. From the interdependence
analysis in Fig (6) we can still find evidence for directionality
in both approaches. Different from the zero-noise case, both
methods find a non zero directional values for all studied
couplings. However, the values of the two methods settle down
to a different∆G for high values of coupling. In the noisy
synchronisation stage their behaviours are different.

B. Henon map

Next, we take the case of a 2D discrete system using the
numerical simulations of two unidirectionally coupled Hénon
maps which has been studied in several papers [20] [27] [18].

X

{

xi+1 = 1.4 − x2
i + 0.3ui

ui+1 = xi
(10)
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Fig. 5. Same plot of Fig (4) for the case of coupled logistic maps with noise
level s = 0.01

Y

{

yi+1 = 1.4 − (Cxi + (1 − C)yi)yi + Bvi

vi+1 = yi
(11)

Following the literature, the parameterB = 0.3 imposes
two identical system whileB = 0.1 is used for non-identical
systems [20]. Here, we assume two identical systems. We vary
the coupling parameterC between0 and1. For C ≃ 0.8 we
observe the coupled system switching to perfect synchronisa-
tion. In Fig. (7) we show the synchronisation pattern for this
example.

Using the valuesM = 3, τ = 1 and we construct a predictor
using 4 neighbours. These values were selected based on
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cross validation. In Fig. (8) we show the differential Granger
measure∆G with respect to the two approaches. In this case,
the higher complexity of the map even in the noiseless case,
drives a difference in the two approaches for the value reached
by ∆G. Importantly, for both cases we can find the correct
directionality of the flow.

C. Chain of Tent maps

Our final example of increasing complexity is a chain of
L one-dimensional tent maps. The coupling scheme has been
studied in [10] and is given by

xi+1 = f
(

Cxl−1
i + (1 − C)xl

i

)

, (12)

wherel indicates the index of the chosen map in the chain.
The tent map is given by

f(x) =

{

2x x < 0.5
2 − 2x x ≥ 0.5.

(13)
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In the following analysis, we consider the case where the
number of mapsL is increased from2 to 5. Using the same
paradigm as in the two previous examples, for each value
of L we compute the joint space and the mutual neighbours
Granger indices between the first and the last elements in the
chain. We useM = 1, τ = 1 and we construct the Lorenz
analogues predictor using4 neighbours. In Fig. (9), we plot the
synchronization patterns between the first and the last element
of a chain ofL = 2 tent elements. We observe a transition
to complete synchronization at the value ofC = 0.45. In
Fig. (10), we plot the synchronization pattern forL = 4.
The transition to the complete synchronization stage is the
same forL = 2, 4. From the plots in Fig. (9)(10), we notice
that the results are less ‘sparse’ forL = 2, prior to complete
synchronization.



0 0.5 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
y

0 0.5 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Synchronization Patterns

x
0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C=0.1 C=0.35 C=0.45

Fig. 10. Chain of tent maps with 4 elements. Synchronisationpatternsx vs
y.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

8

9

10
L=2

CouplingCoupling

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

8

9

10
L=3

CouplingCoupling

 

 

∆G

Mutual neighbours
Joint space

∆

Chain of Tent Maps

Coupling

Fig. 11. Directional Granger measure∆G for the case ofL = 2 andL = 3
tent map elements. Increasing the number of elements results in a decreasing
value of the joint space approach Granger index.

In Fig. (11), we show the results of the two differential
Granger indices usingL = 2 and L = 3 while Fig. (12)
depicts the indices forL = 4 andL = 5 . We notice that the
behaviour of the mutual neighbours index does not modify
its qualitative behaviour under an increase of the number of
tent map elements. On the other hand, the joint space index
decreases its value as the lengthL is changed. Nevertheless,
both measures correctly find the true directional interaction in
the chain.

IV. CONCLUSION

The goal of this work was to investigate two different state
space approaches to infer dynamical directional interdepen-
dence between nonlinear time series of a latent complex sys-
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Fig. 12. Same plot as in Fig. (11) withL = 4 andL = 5.

tem. We based our comparison on the Granger approach given
by the mutual predictability using (1). The two techniques we
considered were the joint space approach, which is used in
the causality literature and the mutual neighbours approach,
which has been studied mainly for generalised synchronisation
purposes.

In order to check predictability, in this work we employed
a model which was equivalent to the Lorenz method of ana-
logues based on a particularly simple form of interpolationof
the conditional density estimation. For more general problems,
the kernel model will need to be expanded to incorporate more
useful kernels leading to an alternative formulation of the
analogues approach. We are currently investigating different
choices of kernels and their spatial extension in order to study
local and global modelling of the reconstructed manifold.

From our qualitative investigation, based on synthetic ex-
amples, we conclude that the mutual neighbours approach
performs as well as the joint space approach in finding
directional interactions but with less computational load. The
computational load is due to the choice of the density estima-
tion algorithm which needs a procedure to search for analogues
in the reconstructed space. From the examples we studied
we have observed differences between the two approaches
when the complexity of the underlying system is increased,
although both methods correctly estimated the directionality of
information flow. An analytical study of the difference between
these two approaches is left for a future investigation.
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