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Abstract—We provide results comparing two new methods based on ideas from Wiener, studied a particular class etin
based on different embedding space approaches to infer dice stochastic systems where a plausible definition of caysalit
tional interdependence between bivariate time series, shcas proposed a statistical framework of analysis. Given two ob-

the transition to synchronisation. Both methods share a comon ble ti . du f temst and. if a k-st
identification stage which models the underlying generatorof servable time series andy from systemst' and), if a k-step

each single observable data. This consists of two parts: seaspace ahead predictor of; using the past observable of and y;
reconstruction, and local model fitting using a class of keral together increases the predictability likelihood over edictor
density estimation methods which is an extension of Lorenz ysing only z;, than we can say thal and X are causally
Analogues techniques. The mutual information derived from e|5te. Depending on the flow of information in predicting
the density estimation is used to compare the two approaches . : . .
and is tested on coupled dynamical systems for which the y from X orx from Y aHOW_S us tol infer directionality of
interdependence is controlled. coupling. From a different point of view, we can express the
same concept in a probabilistic way,
. INTRODUCTION

Identifying dynamical directional interdependence among
multivariate time series is an important problem in many If P(z,1xlz; ,y; ) # P(zitilz; ) Y causes¥ (1)
scientific fields such as engineering, econometrics, bjotogl
biomedical analysis. Generally, the mathematical formioia ~ Wherex; andy; are the past time series of the systems
of the underlying generator of the observed signals is nptior to the timei and ;1 is the k-step ahead predictor.
known a priori and their coupling needs to be inferred usirigsing a linear stochastic system, a totally admissible -algo
observational data. This latent generator can be repedéyt rithmic choice [2] which has been largely used, based on
a composite interplay of many subsystems which can result(i) uses the conditional variance of the prediction errer, i
a global complex collective behaviour. Instead of the cat®l o(zi+x|x; ,y; ) and o(z;yx|z; ). The Granger implementa-
statistical description of hidden systems, it can be sefficto tion was based on ARMA modelling and has been employed
estimate information about the relationship between afeskr in many data analysis domains, including, econometrics [3]
signals. An accurate analysis of these relationships ciang br[4] and recently neuroscience [5]. Since for a linear system
about useful inference regarding the hidden connecticsiden the autocorrelation and Fourier spectrum are related by the
the underlying generator. Wiener-Khinchin theorem, we can find implementations of

The nonlinearity of the system is a further complicationausality measures based on coherence [2]. Recent studies
which is common in nature and can make the generatoave addressed the nonlinear analysis issue using an ex-
dynamics more difficult to analyse. Linear tools such dsnsion of Granger causality based on nonlinear predictor
correlation or Fourier analysis have limitations for uneev modelling [6], [7], [8]. Other approaches using entropyr(fo
ing nonlinear couplings. Instead, in the literature, nosdir a review see [9]) have been developed. In [10] (1) has been
interdependence concepts such as causality or synchtionisacalled the measure of deviance from the Markov property
are being used to construct a framework which, in this workihich leads to the concept of Transfer Entropy.
we use as the motivational background for our study. Most of the methods we have listed above for causality

Causality has been the subject of debate due to differatiscovery containing nonlinear systems make use of a prepro
views around its nature and interpretation. While an erogiri cessing stage based on State Space Reconstruction [1&]. Thi
idea of cause and effect is relatively easy to comprehesd, dpproach has become a popular solution in order to learn the
practical translation can lead to an algorithmic represtéort  underlying dynamical structure which generates the oladdev
providing many issues (see [1] for a discussion). Granggr [Bme series. We use this technique in this paper to build the



reconstructed state space in which we run the modified Lorenz ORIGINAL SPACE

analogues approaches.

Defining synchronisation has been less empirical due its h(-)
historical focus on periodic system such as relaxation os-
cillators in which phase contains the information needed to o
infer interdependence and synchronisation. In the last two oll
decades, it has been shown [12] that chaotic systems can
identically synchronise and other levels of definition resbd 4
to be introduced [13]. One of the reasons was the query
of how to define the phase of a chaotic signal. There are
different measures of synchronisation and we refer to the
literature [14], [15]. In this work, we focus on a class of
methods which are related to the concept Géneralised
Synchronisation [16]. Two systems are synchronised if it iSFig. 1. The dynamics of the underlying generator describgdhe space
possible to find a smooth functiofr which relates the two X are projected to the observable subspadsy the functionk(-). A space
state-spaces of the underlying generatorstofand ), i.e., Reconstruction algorithm uses the time series point in build an equivalent
Y = ¥(X), whereX andY are the state spaces &fand). spaceX of X up to a diffeomorphic functiond(.).
A set of possible measures of generalised synchronisasios h
been explored using the _concept of mutual pe|ghbours In t nthetic examples where we have control over the coupling.
reconstructed or embedding state spaces which we denate her
asX andY. In [17], the author projqcts the local structure II. METHODS
of one reconstructed state space, . on the other, i.e. A
Y in order to search for generalised synchronisation. Othe ) s _ _ )
similar measures can be found in [18] and [19] in which the We consider two finite dimensional dynamical systeis
Synchronisation Likelihood is defined. In [20] the procedure ofand Y which describe our underlying generators of the data.
mutual neighbours is used to build a simple nonlinear ptedic USing the state space representations in (2-3), we assueme th
in state space. dynamics of the system is described by stochastic diffeknt

In this paper, we compare two nonlinear approaches §duationsfx(-), fy(-) and the measure functiohs (), hy ()
interdependence analysis motivated by a local nonlinegr- myvhich defines the observable time serigsandy;.
ping version of the Lorenz method of analogues. The Lorenz v { X1 = fe(Xi,Yi) + Ex

OBSERVATION SETS

RECONSTRUCTED SPACE

- Nonlinear modelling

techniqgue was originally a simple way to build a predictor _ — ha(Xo) + (2)
in the reconstructed space. We first consider here a novel i = i) T

ver_S|on_of the L(_)renz f_;llgonthm which uses a kern_el der_15|ty Y = f(Yo X)) +éy

estimation techniques in order to compensate nonlineafity Yy ” — hy(Y)) + vy 3)

the underlying generator of the data. This particular potedi
models the conditional distributions required in (1) whigh ~ where £ and v are general stochastic terms which we
employ to check, using the deviation of the Markov propertgonsider additive and uncorrelated with each other. The ob-
the information flow between the two time series generatoggrvable time series are the quantities between which we wan
In the second part, we investigate two possible ways we fout@infer interdependence which we consider here to be one-
in literature, to obtain the joint information of the pastsse; ~ dimensional. As we introduced in the previous section, vee us
andy; on the left hand side of (1). The causality literaturéhe bold notation, i.eX, to define a vector space while the
suggests approaches based on joining thessetandy; ob- indexed bold one, i.€X;, to specify an element. The lower
taining a larger dimensionality sef” & y; based on a ‘direct notation, i.e.z, indicates the corresponding observable time
sum’ generator space. Instead, using an approach empthasiefies.

for example in [20] [19], we use a method based on mutualWe proceed to the nonlinear modelling .ofandy using a
mappings between local neighbours in the two spaces whig¥p stage identification procedure. In the first part, we use a
we denote byP (z; 11|z ,y; ) = P(ziy1]x; xy; ) with x the State Space Reconstruction which we described (1). For each
notation that we use to define the mutual neighbours mappitiige pointi of the time series, we construct af-dimensional
operator, to be discussed later. space from the vectorX; = (i, Tiyr,.. ., Tit(M—1)r)

In the following section, we define the approach we use &nd Y, = (Yis Yivrs - Yir(m—1)-) Where T is the delay
construct nonparametric predictors in embedding spacggusparameter [21]. In order to simplify the analysis, in this
the Lorenz method of analogues. We define in the second paaper we assume that botfti and ) are embedded in the
the mutual predictors using the two different approachéasgus same dimensio/ and have common delay. For a linear
@, = operators. We employ a Granger like statistic to cheaitochastic system, the dimension of the spakesndY; are
the deviance to the Markov property in (1) as our measurelated by the order of the model which can be retrieved for
of directed interdependence. We illustrate the approasigusautoregressive representations by the AIC criterion [2&,
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Fig. 2. Graphical comparison between the two approachessedaiextract the conditional joint distribution betweer ttvo reconstructed spaces.

instance. In nonlinear time series analysis, Takens [1dysk the observable spacethat can be considered as a database.
that under the sufficient condition that > D + 1, the space We further divided this database in two parts: a training
X and the space of the vectaXsare anembedding, i.e., they set and a test set. Normally, the training set is used to
are related by a diffeomorphic map We have thatD is the learn the conditional probabilitp(X,x) using a minimization
dimension of the limit set oX or the attractor of (2-3). algorithm which is then used on the test set to produce the
The previous property leads to a useful fact for the purpopeedicted value:. Memory-based methods do not learn during
of building a prediction model which we consider as ththe training stage but at each new embedding vektpthe
second identification stage . The projection over the oladdev algorithm needs to find the neighbouf(sj and project the
spacer of the true joint distribution of the datg@ X, ) can be neighbourhood structure on the correspond time serieggoin
retrieved usingp(X,:z:) instead, thanks to the diffeomorphicz;. Computationally, we have that memory based methods are
condition betweeX andX. In this work, we modeb(X,:z:) fast in training, since they require only to build the sett bu
(the same fop(Y,y)) using a class of kernel density esti-slow in prediction. In order to increase the performancenef t
mation methods based on Parzen estimators from which algorithm, we need to build the training set using an optimal
can derive the following conditional expectation (see [8] procedure. Algorithms which build the embedding space us-
details): ing K-D trees [24] can compute the neighbours problem in
O(Klog K) time compared to an unstructured solution. The

~ N N NN complexity of the neighbours problemdd K ?) if we need to
Tivn = E(z|X) = Z w(Xi, X;)z; (4)  compute the pairwise distance &f embedding! dimensional
=1 vectors.

wherei; is thek-step ahead predictor of the time seriedhe anal_ogues algorithm requires parameters to be tunéd suc
point = given by theN-nearest pointX; to X;. The kernel as the dimension of the embedding, the delay parameter and
function w(Xi,Xj) is imposed to satisfy the summatiorthe number of neighbours. Using a different kernel function
constrainthyzlw(Xi,Xj) = 1. If we choose the simplest w(-,-) could result in further parameters to choose. In the
kernel function as a constant ieu(X» X-) — 1/N, the literature [21], there are several procedures developddre
LA ’ (3] ] - ’ . . .
approach is equivalent to the well-knovorenz method of the embedding parametedd and r. In this work, since the

Analogues [21] or the zero-th order predictor [20]. purpose of the predictor methods is not forecasting, buhatet
A different choice of the kernelu(-,-) can be used in comparison, we can use the available test set to drive the

order to increase the performance and the complexity of tggmce of the optimal parametrization of the algorithm. As

predictor model. In this paper we continue with the Loren escribed in the results section, we collect the time sdoies
method, since the main goal is the comparison between {H%offline interdependence analysis. The test set is known a
mutual predictors approaches defined by the operm)rspr'ori and we consider @ross-Validation-Procedureto choose
and x which we describe in the next section. We leave tﬁge parameters which minimise the out-of-sample predictio

performance analysis for causality discovery using differ errors in this set. The. choice of using the test set in order
kernels as future development to compute the prediction errors avoids the problem of model

The approach we describe is an example ofnemory- overfitting of the training data. We define the predictioroesr
based method in the pattern recognition literature [23]. Frorf> ¢ Cy-

the technique we use to build the reconstructed space, we
have a one-to-one relationship between the sp&eand



B. Mutual Predictors conditional probabilities are usually substituted by thaiv

Following (1) and the Granger paradigm, considering ord'ces of the prediction errors which in this case are estidhat
time series, i.ex, we want to examine if the informationfrom (4) and (5) or (6) for the conditional probabilities.igh
gained by incorporating the other time series, iydimproves choicg is valid if we consider the syste_m has been generated
the nonlinear predictability ofc. In the section above we Py @ linear stochastic component. In this work, we model the
modelled the conditional distribution of the right handesigunderlying generator of the data using a local linear kernel
of (1). In this part we are interested in devising a mutu&@PPing which is consistent with this assumption.
predictor ofz which takes into account the information of both The Granger literature, for example [3] [25], has largely
embedding spaceX,Y in order to model the left hand sidediscussed different statistical significance tests in orie
of (1) and quantify the deviation from the Markov property. check the difference between single and mutual predidtyabil

As described in the introduction, in this paper we investiga® comparison of significance tests can be found in [26]. In
two different approaches to gather mutual information frofiis work we employ the following measure which has been
the reconstructed spacds and Y. The first one, which we used in [6]:
refer to as theJoint space approach is depicted in Fig. (2)
and it uses the direct sum spadk = X @ Y where G —In o3 @)

. y—x 2 .

Zi = (Tiy Tiers - oo Tit(M-1)r Yir Yikrs - - - Yik (M—1)r) IS @ g
double-dimensional concatenated embedding space. Using t
spaceZ we model the conditional probabilitiegZ, =) and ~ Whereo; and o2, =~ are respectively the variance of the
p(Z,y) using the kernel analogues approach we discussedSiAgle and the mutual prediction errors. Similarly, we com-

the previous section. This mutual predictor for the case Bfite the termG._., using oy and o7 to check for the
p(Z,z) assumes the following expression inverse link. A potential difference betwee®,_., and the

equivalentG,_., therefore provides a test for directionality

z|zy

~ N . of the coupling which we define as thuifferential Granger
(Elzy)ive = Y w(Zi, Zj)z; ()  measure AG = G,_., — G,_. In [7], the authors proposed
j=1 another index for bidirectional coupling = 221 where
whereZ; are theN-nearest neighbours &;. c1 =0} —07,, ande; = o) — o7 but we leave this index

For the second approach, thaitual neighbours approach, for future comment.
we employ an alternative notation using the operXerY to
extract mutual information from the two reconstructed gsac
X and Y. Figure (2) depicts this approach. We consider the We consider two numerical experiments of nonlinear sys-
embedding vectoX; at time pointi and we search for the tems common in the literature to compare interdependence
corresponding counterpalf; in the partner space. We thenbehaviour. We consider here a quantitative study of the two
obtain the N-nearest neighbours 6Y; in the partner space approaches introduced previously. During the simulatio@,
and we gather the respective set of time points,ﬁi’.(ej). We discard the first10* synthetically generated samples (the
choose the mutual set of neighbours back in the orighal ‘burn-in’ samples) and we divide the rest ing) sets of
space corresponding to tFié—space neighbourﬁ’(j) and we 1000 points. On each set we construct the models discussed
build the following mapping predictor previously. We further partitioned each set into two subsét

N 700 samples for the training ar8f)0 for the test procedures. In
- P the following discussion, we compute the mean and standard
(@|zy)isr = Zw(xi’XY(J‘))xY(i) ) geviation of the differential Granger measuh&s computed
=t over the20 sets for one-step ahead predictors.

As in the previous section, we compute for (6) and (5) the
k-th step prediction out-of-sample errors on the test set. \We Logistic map
denote this error as,,, ande,|,,, respectively. . We consider first a unidirectional coupled logistic map

From the cqnstructlon of the algonthms, we emphasise thakich has been described in [71:
the mutual neighbours approach is computationally fasten t
the joint space approach. Joining the two spaces needs an ad-

IIl. RESULTS

ditional searching procedure for neighbours in the newdrigh X' : ;41 = azi(1 — 2;) + sni41 (8)
dimensional spack. Instead, the mutual neighbours techniquey . .\ — (1 — O)ay;(1 — yi) + Caz;(1 — 2;) + s&i41
can re-use the local structure which has been computed for (9)

eachX andY separately.
wheren and ¢ are unit variance Gaussian distributed noise

C. Interdependence Analysis ands controls the strength of the noise terms. The parameter
In the final step, we need to employ a measure of im- = 3.8 has been chosen. The coupling can vary between

terdependence which quantifies the deviation away from the= 0 and C = 0.5 for the noiseless case. In Fig (7), we

Markov property in (1). As discussed in the introductiorg thplot the synchronisation pattern for different couplingagths
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Fig. 3. Synchronisation patterns vs y for the noiseless coupled logistic

map for different values of coupling’. We notice perfect synchronisation for

C =045 Fig. 4. Values of the directional Granger measixé&' for different values
of the coupling. The bold line is the mutual neighbours appmand the
thin the joint space approachhG > 0 indicates the correct information flow

of the map. The case of identical (‘perfect’) synchronisati "™ Y © %

occurs forC > 0.35, is evident in the figure.

In Fig (4), we consider the measure &fG for the two
different embedding space treatments. For this partioukap
we perform a cross validation procedure and we chddse
1 and = = 1. Moreover, we establish that two neighbour
are sufficient to build the optimal predictor model. Both o
the methods find directional interdependence frpno X
without any particular difference in terms of value. In fac
in Fig. (4) the positive value ofAG indicates the direction
of the information flow from) to X. Both measures fail to
find any directionality when the two systems are in perfe
synchronisation, which is intuitively correct. In thisisition it
should be impossible to distinguish any directional infation
flow between the systems.

We repeat the analysis for the coupled logistic map inclu . , c=01
ing a nonzera = 0.01 random noise contribution. This value
has been chosen so as not to distort the convergent evolut.u.,
of the S_yStemS in (8-9). In Fig (5) We_ do no_t have'_ as IEig. 5. Same plot of Fig (4) for the case of coupled logistigpmwith noise
the previous case, perfect synchronisation but insteadiayn level s = 0.01
synchronisation’ forC = 0.45. From the interdependence
analysis in Fig (6) we can still find evidence for directiahal
in both approaches. Different from the zero-noise case) bot
methods find a non zero directional values for all studied
couplings. However, the values of the two methods settlendow’ { yir1 = L4—(Czi+ (1= C)yi)yi + Bui
to a differentAG for high values of coupling. In the noisy
synchronisation stage their behaviours are different. Following the literature, the parameté = 0.3 imposes

two identical system whileB = 0.1 is used for non-identical

Synchronization Patterns
1 T 1

(11)

Vit1 = Y

B. Henon map systems [20]. Here, we assume two identical systems. We vary

Next, we take the case of a 2D discrete system using th¥ coupling parametef’ between) and 1. For ¢ ~ 0.8 we
numerical simulations of two unidirectionally coupledrt Observe the coupled system switching to perfect synchaenis

maps which has been studied in several papers [20] [27] [18PN- |n| Fig. (7) we show the synchronisation pattern fosthi
example.

(10) Using the valued/ = 3, 7 = 1 and we construct a predictor

Uir1 = X4 using 4 neighbours. These values were selected based on
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Directionality can be found in the range of coupling we studgwever in
this case we notice a difference in the two approaches fan kiue of
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cross validation. In Fig. (8) we show the differential Grang Fig. 9. Chain of tent maps with 2 elements. Synchronisatiatiemsz vs
measureAG with respect to the two approaches. In this casé,

the higher complexity of the map even in the noiseless case,

drives a difference in the two approaches for the value reéch

by AG. Importantly, for both cases we can find the correct In the following _aanyS|s, we consider the_case where the
= . number of mapd. is increased fron2 to 5. Using the same
directionality of the flow.

paradigm as in the two previous examples, for each value
C. Chain of Tent maps of L we compute the joint space and the mutual neighbours

our final example of increasing complexity is a chain Ogsranger indices between the first and the last elements in the
P 9 plexity chain. We useM = 1, 7 = 1 and we construct the Lorenz

L one-dimensional tent maps. The coupling scheme has been . . . .
studied in [10] and is given by analogues predictor usinigneighbours. In Fig. (9), we plot the

synchronization patterns between the first and the lasteriem
. of a chain of L = 2 tent elements. We observe a transition

— -1

Tiy1 = f (Cﬂ?i +(1- C)‘L’z')’ 12) to complete synchronization at the value @f = 0.45. In

where! indicates the index of the chosen map in the chaifiid- (10), we plot the synchronization pattern for = 4.
The tent map is given by The transition to the complete synchronization stage is the

same forL = 2,4. From the plots in Fig. (9)(10), we notice
| 22 x < 0.5 13 that the results are less ‘sparse’ fbr= 2, prior to complete
fl@) = 2 — 2z x > 0.5. (13) synchronization.
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Fig. 12. Same plot as in Fig. (11) with =4 and L = 5.

L=2 Chain of Tent Maps L=3

10 T T T 10 T

= Mutual neighbours
Joint space

1 of ] tem. We based our comparison on the Granger approach given
by the mutual predictability using (1). The two techniques w
considered were the joint space approach, which is used in

1 s ] the causality literature and the mutual neighbours apgroac
| il | which has been studied mainly for generalised synchrdaisat
purposes.
3 | °l ] In order to check predictability, in this work we employed
| . ] a model which was equivalent to the Lorenz method of ana-

logues based on a particularly simple form of interpolatién

the conditional density estimation. For more general moid,

o 1 o ] the kernel model will need to be expanded to incorporate more

useful kernels leading to an alternative formulation of the

analogues approach. We are currently investigating eiffer

051 02 63 04 05 o8 07 O o7 o o7 o5 o5 o7 choices of kernels and their spatial extension in orderudyst
Coupling local and global modelling of the reconstructed manifold.

From our qualitative investigation, based on synthetic ex-
Fig. 11. Directional Granger measufeG for the case of. = 2andZ =3 amples, we conclude that the mutual neighbours approach
tent map elements. Increasing the number of elements sesudt decreasing performs as well as the joint space approach in finding
value of the joint space approach Granger index. . . . . . .
directional interactions but with less computational lo@tie
computational load is due to the choice of the density estima
In Fig. (11), we show the results of the two differentiafion algorithm which needs a procedure to search for analegu
Granger indices using. = 2 and L = 3 while Fig. (12) in the reconstructed space. From the examples we studied
depicts the indices fof. = 4 and L = 5 . We notice that the W& have observed differences between the two approaches

behaviour of the mutual neighbours index does not modifyhen the complexity of the underlying system is increased,
its qualitative behaviour under an increase of the number @fnough both methods correctly estimated the directigned

tent map elements. On the other hand, the joint space indgiermation flow. An analytical study of the difference betn

decreases its value as the lendttis changed. Nevertheless N€S€ tWo approaches is left for a future investigation.

both measures correctly find the true directional intecactin
the chain.
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