
Implementation of One Dimensional CNN Array
on FPGA - A Design Based on Verilog HDL

Alireza Fasih

 Transportation Informatics Group
fasih@qazviniau.ac.ir

Jean C. Chedjou
Transportation Informatics Group

 University of Klagenfurt
Klagenfurt-Austria

jean.chedjou@uni-klu.ac.at

Kyandoghere Kyamakya
Transportation Informatics Group

University of Klagenfurt
Klagenfurt-Austria

kyandoghere.kyamakya@uni-klu.ac.at

Abstract— In this paper an FPGA based Implementation of a
1D-CNN with a 3×1 template and 8×1 length will be described.
The Cellular Neural Networks (CNN) is a parallel processing
technology that has been generally used for image processing.
This system is a reduced version of a Hopfield Neural Network.
The local connections between a cell and the neighbors in this
implementation of this technology is easier than in the case of
Hopfield Neural Networks. There are various implementation
options of CNN on chips, the best solution being using ASIC
technology. The next best is an emulation on top of a digital
reconfigurable chip such as FPGA. Designing and developing
universal CNN based machines using these technologies is
possible. Since FPGAs are COTS components and their growth is
high, a simple and economical architecture is obtained by
designing an CNN emulation on FPGA chips. This digital
designing on FPGA does however have a tradeoff between speed
and area. One key target is therefore to reach to a best
performance for this emulation architecture under the
mentioned constraints.

Keywords— Cellular Neural Network; CNN Emulation on
FPGA; Simulation; HDL.

I. INTRODUCTION
This paper briefly introduces a the design of digital

emulation of CNN based on hardware description languages.
Cellular Neural Network has been introduced by Chua and
Yang from the University of California at Berkeley in 1988
[4]. This type of neural networks is a reduced version of
Hopfield Neural Networks. One of the most important features
of CNN is the local connectivity; in this technology each cell
is connected only to its neighbor cells. Due to local connection
between a cell and the neighbors a hardware implementation
of this type of neural networks is easily realizable [5]. By
digitizing the analog behavior of this system (i.e. emulation on
a digital platform) one is able realize this system based on
FPGA. Due to the local connectivity and processing around
each cell the global system works like a parallel processor
system [6].

The behavior of a CNN system is based on the settings of
the template values. By changing these template values the
CNN behavior is affected. This is a very feature for realizing a

universal machine by using CNN [7]. A test-bed for CNN
emulation on an FPGA evaluation board is a relatively cheap
option and the required development time should be
significantly low.

II. CNN DIGITAL EMULATION/MODELLING
CNN mathematical models for each cell are first-order

equations like Eq-1 shown below.
Eq-1:

For modeling this equation in HDL, we must simplify

nonlinear terms. The simplified equation takes the form of
equation (Eq-2) as following.

Eq-2:

IvBvAxx uy +++−= **&

In this equation 'A' is a template for feedback operator and

'B' is a template for control.

Eq-3:

NjMi

IvlkjiB

tvlkjiAtv
Rdt

tdvC

EquationState

jiNlkC

ukl

jiNlkC
yklxij

x

xij

r

r

≤≤≤≤

+

++−=

∑

∑

∈

∈

1 ; 1

),;,(

)(),;,()(1)(

:

),(),(

),(),(

()
NjMi

tvtvtv

EquationOutput

xijxijyij

≤≤≤≤

−−+=

1 ; 1

1)(1)(
2
1)(

:

The output Equation is a linear sigmoid function for

limiting the output state value. In some references the sigmoid
function is noted by f (.).

Converting equation-2 to a discrete time model is possible.
A Discrete Time CNN can easily be mapped to an FPGA by
defining digital integrators, multipliers, adders and other
digital operators. After defining fundamental operators in
FPGA and wiring of/between these operators, a dynamic
modeling of CNN is possible [7]. A single CNN cell model is
like a first-order differential equation; therefore, solving this
equation by this architecture is possible.

Figure 1. Simplify CNN Cell Dynamic Model

The architecture of this module consists of two main parts,

hardwire and behavioral sequential units. In the hardwire part
we must define the relationships of the CNN cells with their
neighbors by the template values. These connections are based
on convolution operators. With array cloning of convolution
modules in HDL we are able to develop/extent the size of the
CNN module. Using this approach we can realize a growth of
the CNN structure up to a simple 8×1 width. In the CNN
structure, there are 2 type templates: control templates and
feedback templates. Due to the architecture of the feedback
path we have to define a memory block for a appropriate
handling of this path. Another main memory unit is defined
for integrators components. In this system, all convolution unit
should work together concurrently. Therefore the results of
TA*Y and TB*U are immediately accessible (see Fig.1).

In the top-level CNN module Verilog code defines 16-Bit

2’s complement variables for loading data and templates to
this module. One bit for sign and 3 bit for round value and 12
bit float value. Therefore, we are able to load values to this
module in the range of [-7, +7]. For the 12 bit fixed float
register, the accuracy is 1/ (122). Input data range is limited to
the range of [-1, +1]; -1 means black and +1 is white value.
This procedure means that for image processing purposes we
must rescale the image values to this range. On the other hand,
value of each gray pixel must be in range of [-1, +1].

According to the Equation-4, we are able to normalize the
input data.

Eq-4:

U = Pixel_value * 2 – 1

The convolution module loads template values and inputs
data and then return the product of these values. The following
block diagram shows the convolution operator I/O (see Fig.2).
We set zero for out of bound values in the CNN array. The
module cloning based on this diagram is simple in HDL code.

Figure 2. Convulotion I/O Block Diagram

This module of Fig.2 operates according to Equation-5.

Eq-5:

This module is common for TA*Y and TB*U.
The code below shows the calling conv2 function for solving
the convulotion between Control Template and Input Data on
cell 7:
conv2 ccn7 (M0[7],VB1,VB2,VB3,16'd0,u7,u6)

Further, the convolution on feedback template and output state
is similar to the code below:

conv2 fcn7 (M1[7],VA1,VA2,VA3,16'd0,Y[7],Y[6])

More details on the convolution module are presented in the
paper appendix. Other main important units for developing
this module are the integrator and linear sigmoid function. To
implement an integrator in HDL we need a register. In
previous steps we determined the convolution for feedback
and control templates. In the integrator unit we must sum the
result in each new cycle with previous values of the register.
The convolution module’s length defines on 18bits. According
to the length of M0 and M1, the length of the integrator
register should be 32 bit. The following code below is

Conv Module

a1 a2 a3 b1 b2 b3

C (a,b)

obtained after synthesis and is like an 8 integrator that work
concurrently.

always @(posedge clk)

begin

for (j=0;j<=7;j=j+1)

begin

 res[j] = S2[j];

end

In this code the term of S2 is the sum of C(TA,Y) and
C(TB,U) from the previous cycle.
The best method to design a sigmoid function is to use an if-
then rule. The following code below shows the way this unit
operates. “Greater than values” will be limited by this
procedure between +1 and -1.
for (j=0;j<=7;j=j+1)
begin
if (res[j]>32'sh00000_000) // > 0
 begin
 Y[j]=16'h1_000; // +1
 res[j]=32'h00001_000;
 end
 if (res[j]==32'sh00000_000) // = 0
 begin
 Y[j]=16'h0_000; // 0
 res[j]=32'h00000_000;
 end
 if (res[j]<32'sh00000_000) // < 0
 begin
 Y[j]=16'hf_000; // -1
 res[j]=32'hfffff_000;
 end
End

In these units the “res” vector is a temporary register for
simulating the integrator and “Y” variable is a memory for
storing CNN output state. We used 2 level memories for
designing totally a simple 8×1 CNN..

Figure 3. Digital Architecture of CNN

Figure 3 shows the digital architecture of a CNN cell
introduced in this paper. According to this architecture the
system is synchronous. Parts of integrator, sigmoid function
and loading state variable are triggered by a rising clock.

III. SIMULATION RESULTS

To simulate this system we use ModelSim 6 software. The
result is very closed to the one obtained from a simulation in
Matlab.

For example, by setting TA= [0.5, +1, -1] and TB=Bias=0,
the following wave form appears. The converge time for this
case in this architecture is 200ns (8 clock).

u= [+1,-1,-1, +1, +1,-1,-1, +1]
TA= [0.5, +1, -1]
TB=Bias=0
The output for this defined template is
 xt=[+1,-1,+1,-1,+1,-1,+1,-1]

The converge time for the case below in this architecture is
150ns (6 clock).

u= [+1,-1,-1, +1, +1,-1,-1, +1]
TA= [-1, +2, +1]
TB=Bias=0
The output for this defined template is
 xt=[+1,+1,+1,+1,-1,+1,-1,+1]

In an advanced mode, there is another way for simulating the
HDL code. In Matlab 2006a we have been able to establish a
connection between Modelsim simulator and Simulink.
By a TCP/IP connection between Simulink in Matlab and the
Modelsim simulator we were able to test this CNN code on
Images. We must operate this CNN module on each Image
line separately.

TA= [-1, +2, +1]
TB=Bias=0

Figure 4. Hole Counting Sample, (Left) Input Image, (Right) output result.

CLK

TA= [+1, -1, +1]
TB= [0, 1, 0]
Bias = 0

Figure 5. Filter Sample: (Left) Input Image, (Right) output result.

IV. CONCLUSION

In this paper we introduced a new model for simulation

and digital implementation/emulation of digital CNN. Finally,
the model could be simulated and validate by several
templates. Future works are going to improve this module to
realize a large-scale CNN based universal machine system.

REFERENCES

[1] Martinez, J. J., F. J. Toledo, et al. "New emulated discrete model of
CNN architecture for FPGA and DSP applications." Lecture notes in
computer science: 33-40.

[2] T. Roska, A. Rodriguez-Vazquez, “Review of CMOS implementations
of the CNN universal machine-type visual microprocessors”, IEEE Int.
Symp. on Circuits and Systems, ISCAS 2000, Geneva-Italia, vol. 2, pp.
120-123, 2000.

[3] Chua, L. O. and L. Yang (1988). "Cellular neural networks:
applications." Circuits and Systems, IEEE Transactions on 35(10):
1273-1290.

[4] Chua, L. O. and L. Yang (1988). "Cellular neural networks: theory."
Circuits and Systems, IEEE Transactions on 35(10): 1257-1272.

[5] J.Zhao, Q. Ren, J. Wang, and H. Meng,"A New Approach for Image
Restoration Based on CNN Processor",ISNN 2007, Part III, LNCS
4493, pp. 821–827, 2007.

[6] Toledo, F. J., J. J. Martínez, et al. (2005). "Image processing with CNN
in a FPGA-based augmented reality system for visually impaired
people." 8º Int. Work-Conference on Artificial and Natural Neural
Networks, IWANN: 906-912.

[7] Martinez-Alvarez, J. J., F. J. Garrigos-Guerrero, et al. "High
Performance Implementation of an FPGA-Based Sequential DT-CNN."

[8] Eric Y. Chou, Bing J. Sheu, Topzy H. Wu, Robert C. Chang ,"VLSI
Design of Densely-Connected Array Processors", Proceedings of the
International Conference on Computer Design: VLSI in computers &
Processor (ICCD '95)

[9] Lai, K. and P. Leong "Implementation of Time-Multiplexed CNN
Building Block Cell." Proc. MicroNeuro 96: 80-85.

[10] Sadeghi-Emamchaie, S., G. A. Jullien, et al. (1998). "Digital arithmetic
using analog arrays." VLSI, 1998. Proceedings of the 8th Great Lakes
Symposium on: 202-205.

[11] Espejo, S., A. Rodriguez-Vazquez, et al. (1994). "Smart-pixel cellular
neural networks in analog current-mode CMOStechnology." Solid-State
Circuits, IEEE Journal of 29(8): 895-905.

APPENDIX

// 1×3 Convolution Module

module conv2 (conv,VA1,VA2,VA3,Y1,Y2,Y3);

output [17:0] conv; //17

input [15:0]VA1;

input [15:0]VA2;

input [15:0]VA3;

input [15:0]Y1;

input [15:0]Y2;

input [15:0]Y3;

wire signed [17:0] conv;

wire signed [15:0] out1;

wire signed [15:0] out2;

wire signed [15:0] out3;

signe_mul MUL1(out1,VA1,Y1);

signe_mul MUL2(out2,VA2,Y2);

signe_mul MUL3(out3,VA3,Y3);

assign conv = out1+out2+out3;

endmodule

// resule range [-7,+7] accuracy 12bit Fixed Float

module signe_mul (out,a,b);

output [15:0] out;

input [15:0] a;

input [15:0] b;

wire signed [15:0] out;

wire signed [31:0] mul_out;

assign mul_out = a*b;

assign out = {mul_out[31],mul_out[26:12]};

endmodule

