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Abstract— In this paper an FPGA based Implementation of a 
1D-CNN with a 3×1 template and 8×1 length will be described. 
The Cellular Neural Networks (CNN) is a parallel processing 
technology that has been generally used for image processing. 
This system is a reduced version of a Hopfield Neural Network. 
The local connections between a cell and the neighbors in this 
implementation of this technology is easier than in the case of 
Hopfield Neural Networks. There are various implementation 
options of CNN on chips, the best solution being using ASIC 
technology. The next best is an emulation on top of a digital 
reconfigurable chip such as FPGA. Designing and developing 
universal CNN based machines using these technologies is 
possible. Since FPGAs are COTS components and their growth is 
high, a simple and economical architecture is obtained by 
designing an CNN emulation on FPGA chips. This digital 
designing on FPGA does however have a tradeoff between speed 
and area. One key target is therefore to reach to a best 
performance for this emulation architecture under the 
mentioned constraints. 
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I. INTRODUCTION 
This paper briefly introduces a the design of digital 

emulation of CNN based on hardware description languages. 
Cellular Neural Network has been introduced by Chua and 
Yang from the University of California at Berkeley in 1988 
[4]. This type of neural networks is a reduced version of 
Hopfield Neural Networks. One of the most important features 
of CNN is the local connectivity; in this technology each cell 
is connected only to its neighbor cells. Due to local connection 
between a cell and the neighbors a hardware implementation 
of this type of neural networks is easily realizable [5]. By 
digitizing the analog behavior of this system (i.e. emulation on 
a digital platform) one is able realize this system based on 
FPGA. Due to the local connectivity and processing around 
each cell the global system works like a parallel processor 
system [6]. 

The behavior of a CNN system is based on the settings of 
the template values. By changing these template values the 
CNN behavior is affected. This is a very feature for realizing a 

universal machine by using CNN [7]. A test-bed for CNN 
emulation on an FPGA evaluation board is a relatively cheap 
option and the required development time should be 
significantly low. 

 

II. CNN DIGITAL EMULATION/MODELLING 
CNN mathematical models for each cell are first-order 

equations like Eq-1 shown below. 
Eq-1:  
 
 
 
 
 
 
 
 
For modeling this equation in HDL, we must simplify 

nonlinear terms. The simplified equation takes the form of 
equation (Eq-2) as following. 

 
Eq-2: 
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In this equation 'A' is a template for feedback operator and 

'B' is a template for control. 
 
Eq-3: 
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The output Equation is a linear sigmoid function for 

limiting the output state value. In some references the sigmoid 
function is noted by f (.). 

Converting equation-2 to a discrete time model is possible. 
A Discrete Time CNN can easily be mapped to an FPGA by 
defining digital integrators, multipliers, adders and other 
digital operators. After defining fundamental operators in 
FPGA and wiring of/between these operators, a dynamic 
modeling of CNN is possible [7]. A single CNN cell model is 
like a first-order differential equation; therefore, solving this 
equation by this architecture is possible. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Simplify CNN Cell Dynamic Model 

 
The architecture of this module consists of two main parts, 

hardwire and behavioral sequential units. In the hardwire part 
we must define the relationships of the CNN cells with their 
neighbors by the template values. These connections are based 
on convolution operators. With array cloning of convolution 
modules in HDL we are able to develop/extent the size of the 
CNN module. Using this approach we can realize a growth of 
the CNN structure up to a simple 8×1 width. In the CNN 
structure, there are 2 type templates: control templates and 
feedback templates. Due to the architecture of the feedback 
path we have to define a memory block for a appropriate 
handling of this path. Another main memory unit is defined 
for integrators components. In this system, all convolution unit 
should work together concurrently. Therefore the results of 
TA*Y and TB*U are immediately accessible (see Fig.1). 

 
In the top-level CNN module Verilog code defines 16-Bit 

2’s complement variables for loading data and templates to 
this module. One bit for sign and 3 bit for round value and 12 
bit float value. Therefore, we are able to load values to this 
module in the range of [-7, +7]. For the 12 bit fixed float 
register, the accuracy is 1/ ( 122 ). Input data range is limited to 
the range of [-1, +1]; -1 means black and +1 is white value. 
This procedure means that for image processing purposes we 
must rescale the image values to this range. On the other hand, 
value of each gray pixel must be in range of [-1, +1]. 

According to the Equation-4, we are able to normalize the 
input data. 

Eq-4: 
 

U = Pixel_value * 2 – 1 
 

The convolution module loads template values and inputs 
data and then return the product of these values. The following 
block diagram shows the convolution operator I/O (see Fig.2). 
We set zero for out of bound values in the CNN array. The 
module cloning based on this diagram is simple in HDL code. 
 

 

 

 

 

 

 

 

Figure 2. Convulotion I/O Block Diagram 

This module of Fig.2 operates according to Equation-5. 
 
Eq-5: 
 
 

This module is common for TA*Y and TB*U.  
The code below shows the calling conv2 function for solving 
the convulotion between Control Template and Input Data on 
cell 7: 
conv2 ccn7 (M0[7],VB1,VB2,VB3,16'd0,u7,u6) 

 

Further, the convolution on feedback template and output state 
is similar to the code below:  
 

conv2 fcn7 (M1[7],VA1,VA2,VA3,16'd0,Y[7],Y[6]) 

 
More details on the convolution module are presented in the 
paper appendix. Other main important units for developing 
this module are the integrator and linear sigmoid function. To 
implement an integrator in HDL we need a register. In 
previous steps we determined the convolution for feedback 
and control templates. In the integrator unit we must sum the 
result in each new cycle with previous values of the register. 
The convolution module’s length defines on 18bits. According 
to the length of M0 and M1, the length of the integrator 
register should be 32 bit. The following code below is 

Conv Module 

a1  a2 a3 b1  b2  b3  

C (a,b)



obtained after synthesis and is like an 8 integrator that work 
concurrently. 

always @(posedge clk) 

begin 

for (j=0;j<=7;j=j+1) 

begin 

  res[j] = S2[j]; 

end 

 
In this code the term of S2 is the sum of C(TA,Y) and 
C(TB,U) from the previous cycle. 
The best method to design a sigmoid function is to use an if-
then rule. The following code below shows the way this unit 
operates. “Greater than values” will be limited by this 
procedure between +1 and -1. 
for (j=0;j<=7;j=j+1) 
begin 
if (res[j]>32'sh00000_000)  // > 0 
     begin 
        Y[j]=16'h1_000;     // +1 
        res[j]=32'h00001_000; 
     end          
     if (res[j]==32'sh00000_000) // = 0 
     begin 
        Y[j]=16'h0_000;      // 0 
        res[j]=32'h00000_000;         
     end      
     if (res[j]<32'sh00000_000)  // < 0 
     begin 
        Y[j]=16'hf_000;      // -1     
        res[j]=32'hfffff_000;                 
     end 
End 

In these units the “res” vector is a temporary register for 
simulating the integrator and “Y” variable is a memory for 
storing CNN output state. We used 2 level memories for 
designing totally a simple 8×1 CNN.. 

 
 
 
 
 
 
 

 
 
 

 

Figure 3. Digital Architecture of CNN 

Figure 3 shows the digital architecture of a CNN cell  
introduced in this paper. According to this architecture the 
system is synchronous. Parts of integrator, sigmoid function 
and loading state variable are triggered by a rising clock. 

 
III. SIMULATION RESULTS  

To simulate this system we use ModelSim 6 software. The 
result is very closed to the one obtained from a simulation in 
Matlab.  

For example, by setting TA= [0.5, +1, -1] and TB=Bias=0, 
the following wave form appears. The converge time for this 
case in this architecture is 200ns (8 clock). 

u= [+1,-1,-1, +1, +1,-1,-1, +1] 
TA= [0.5, +1, -1] 
TB=Bias=0 
The output for this defined template is 
 xt=[+1,-1,+1,-1,+1,-1,+1,-1] 
 

The converge time for the case below in this architecture is 
150ns (6 clock). 

u= [+1,-1,-1, +1, +1,-1,-1, +1] 
TA= [-1, +2, +1] 
TB=Bias=0 
The output for this defined template is 
 xt=[+1,+1,+1,+1,-1,+1,-1,+1] 
 

In an advanced mode, there is another way for simulating the 
HDL code. In Matlab 2006a we have been able to establish a 
connection between Modelsim simulator and Simulink. 
By a TCP/IP connection between Simulink in Matlab and the 
Modelsim simulator we were able to test this CNN code on 
Images. We must operate this CNN module on each Image 
line separately. 
 

TA= [-1, +2, +1] 
TB=Bias=0 

 
 
 
 
 
 
 
 

Figure 4.  Hole Counting Sample,  (Left) Input Image, (Right) output result. 
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TA= [+1, -1, +1] 
TB= [0, 1, 0] 
Bias = 0 

 
 
 
 
 
 
 
 
 

Figure 5.  Filter Sample:  (Left) Input Image, (Right) output result. 

 
IV. CONCLUSION  

 
In this paper we introduced a new model for simulation 

and digital implementation/emulation of digital CNN. Finally, 
the model could be simulated and validate by several 
templates. Future works are going to improve this module to 
realize a large-scale CNN based universal machine system. 
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APPENDIX 
 

// 1×3 Convolution Module 

module conv2 (conv,VA1,VA2,VA3,Y1,Y2,Y3); 

output [17:0] conv; //17 

input [15:0]VA1; 

input [15:0]VA2; 

input [15:0]VA3; 

input [15:0]Y1; 

input [15:0]Y2; 

input [15:0]Y3; 

wire signed [17:0] conv; 

wire signed [15:0] out1; 

wire signed [15:0] out2; 

wire signed [15:0] out3; 

signe_mul MUL1(out1,VA1,Y1); 

signe_mul MUL2(out2,VA2,Y2); 

signe_mul MUL3(out3,VA3,Y3); 

assign conv = out1+out2+out3; 

endmodule 

 

// resule range [-7,+7] accuracy 12bit Fixed Float 

module signe_mul (out,a,b); 

output [15:0] out; 

input [15:0] a; 

input [15:0] b; 

wire signed [15:0] out; 

wire signed [31:0] mul_out; 

assign mul_out = a*b; 

assign out = {mul_out[31],mul_out[26:12]}; 

endmodule 


