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Abstract— We present a model for the coupling between the
recently predicted hybrid wave modes and the well-established
dipole resonances observed in a cloud of cold atoms. We show
that such oscillations are described by a forced oscillator equation
in the form of a generalized Mathieu equation. We report on the
stability conditions. A feedback control scheme is discussed in
order to control the unstable solutions of the homogenous system.

I. INTRODUCTION

In the last years, special attention has been given to the
low temperature physics [3]. The advent of laser cooling
techniques, essentially because of the growing interest in
the Bose-Einstein condensation, has envisage the possibility
to explore, both theoretic and experimentally, new exciting
features in the field. Many fundamental aspects of low tem-
perature physics, which have recently been reported, arise from
several disciplines and may compromise the actual boundaries
between them. As example, one should emphasize the studies
developed in cold atoms and Bose-Einstein condensation, and
very exciting theoretical works in quantum plasmas.

In this work, we explore the nonlinear coupling between
the recently predicted hybrid waves and the dipole resonance
due to the trapping potential, in a system of cold atoms [6].
The hybrid modes in cold atoms are formally similar to the
Langmuir plasma waves [1], [2], but they present an acoustic
nature. Therefore, such modes consist on sound oscillations
that exhibit a lower cut-off when k → 0.

II. BASIC EQUATIONS AND DERIVATION OF THE MODEL

A system of cold atoms is achieved by mean of a magneto-
optical trapping (MOT), which results of the combination
of Doppler cooling techniques with the spatial confinement
potential due to the magnetic field. In the low density Doppler
model, the effective external force ~FMOT = −α~v − κ~r
depends on the experimental parameters κ = αµ/kL, which
represents the spring constant of the trap, and α, the friction
coefficient, given by α = −8h̄2s∆/Γ/(1 + 4∆2/Γ2). Here,
s = I0/Isat is the incident on-resonance saturation parameter
per beam, I0 is the incident laser intensity, Γ the natural
line width of the transition used in the cooling process and
∆ = ωL − ωa the frequency detuning between the laser
frequency ωL = kLc and the atomic transition frequency ωa.
The spring constant κ defines the natural time scale, the dipole

frequency ωD =
√
κ/M , where M represents the mass of a

single atom. The validity of this model is known to be limited
to only a moderate number of atoms (typically 105−106). For
larger number of atoms, additional forces need to be taken into
consideration. Therefore, the second force to be considered
is the shadow force, or absorption force, ~FA, and was first
discussed by Dalibard [4]. This is associated with the gradient
of the incident laser intensity due to laser absorption by the
atomic cloud. It is an attractive force which can be determined
by ∇ · ~FA = −σ2

LI0c
−1n(~r), where σL represents the laser

absorption cross section and n(~r) is the atom density profile.
The third force to be included in this model is the repulsive
force between the atoms due to the radiation pressure, ~FR, and
can be given by ∇· ~FR = σLσRI0c

−1n~r, where σR represents
the scattering cross section. This allows us to describe the
dynamics with an effective force ~FT = ~FMOT + ~Fc, where
~Fc = ~FA+ ~FR may be regarded as a collective self-consistent
force, which is given by∇· ~Fc = Qn, Q = σR(σL−σR)I0c.
Here Q stands for the effective charge and allows us to
regard the system of cold atoms as a one-component plasma,
confined in an external potential. The natural time scale
associated with this effective fluid description is given by the
generalized plasma frequency ωP =

√
Qn0/M , where n0 is

the unperturbed density profile, such that ∇· ~FT (n = n0) = 0.
By taking the zeroth and first order momenta in the Fokker-

Planck equation, we can write down the system of equations
that effectively describe an amount of cold atoms as a fluid,

∂n

∂t
+∇ · (n~v) = 0, (1)

∂~v

∂t
+ (~v · ∇)~v =

~FT
M
−
~∇P
Mn

, (2)

∇ · ~FT = Q(n− n0). (3)

This system has been also used by other authors to describe
Coulomb explosions in optical molasses [5]. The principal aim
of this work is to describe the coupling between the two time
scales given by ωD and ωP , which respectively represent the
typical time scales of the oscillations of the center-of-mass
and the acoustic waves that may be excited in the system.
To proceed with this task, we will use the linear response
theory techniques by separating each relevant physical quantity
into its equilibrium and perturbation components, such as



n = n0 + ñ, ~v = ~v0 + δ~v, ~FT = ~FMOT + δ ~Fc. Setting
the equilibrium velocity field ~v0(t) = ~u0 sinωDt+ φ, basic
algebra calculations yield

∂2ñ

∂t2
+ n0

∂

∂t
∇ · δ~v + (4)

+~u0 · ∇
[
∂ñ

∂t
sin(ωDt+ φ) + ñωD cos(ωDt+ φ)

]
= 0,

where he have retained only the terms in first order of pertur-
bation. We will later devote some attention to the question of
how higher orders in the perturbative analysis could originate
qualitatively different results. In particular, we will explain the
origin of the saturation in the stability observed by di Stefano
et al. in Ref. [7]. One of the problems that may arise in this
effective model is concerned with the equation of state for
the hydrodynamical pressure P = P0 + P̃ . In the present
derivation, we will assume that the cloud of cold atoms is
described by adiabatic law P ∝ nγ , where γ represents the
adiabatic constant. Therefore, we can define the sound velocity
uS = γ P0

M for the equilibrium system. Regarding that the wave
number k of the sound waves is small enough compared to the
size of the system, such that it can be regarded as an infinite
medium, the following relation holds

∇2P̃

P0
≈ −γ k

2ñ

n0
. (5)

By putting eqs. (4)-(5) together, we should obtain

∂2ñ

∂t2
+ (ω2

P + u2
Sk

2)ñ+ (6)

+~u0 · ∇
[
∂ñ

∂t
sin(ωDt+ φ) + ωDt cos(ωDt+ φ)

]
= 0,

and assuming that ñ(~r, t) = B̃(~r)Ã(t), we may finally write

∂2Ã

∂τ2
+ [∆ + 2ε cos(2τ)] Ã+ 2ε sin(2τ)

∂Ã

∂τ
= 0, (7)

where we defined 2τ = ωDt+φ, ∆ = 4(ω2
P +u2

sk
2)/ω2

D and
ε = 2~u0 · ∇ ln B̃/ωD. Equation (7) belongs to the family of
Hill equations and is formally similar to the Mathieu equation,
whose properties are already well-known. The interest of
this work thus remain in the numerical exploration of the
homogeneous system in order to understand how to design
a feedback system to control the instabilities.

In order to conclude the discussion of the main features of
this model, we point out some remarks concerning the first
order perturbation used in its derivation. One of the reasons
for such an assumption has to deal with the approximation
of parabolic potential, related to the confinement force −k~r
discussed in the introduction. In that case, the linear response
theory holds. This obviously does not correspond to the exper-
imental reality, since the potential is not perfectly parabolic,
leading the instabilities to saturate, as observed in Ref. [7].
Such saturation would be explained by taking higher order of
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Fig. 1. Characteristic curves separating the stable and the unstable regimes
computed numerically by using the Floquet’s theory. The shadowed zones
correspond to the first three stable zones. The full lines repreent the π-periodic
solutions and the dashed lines represent the 2π-periodic ones.

perturbation in Eq. (7), which would introduce anharmonicity
to the system and thus an amplitude dependent frequency,
leading to the detuning between the natural and the forcing
frequencies, saturating the instability. For that reason, this
model illustrates the ”worse case scenario” of the instabilities
that may occur in a magneto-optical trap and so the design
of a robust control system may be required. In the future, we
may think of extending this techniques to saturated instabilities
which, under the experimental point of view, would represent
the more interesting problem.

III. STABILITY AND FREE RESPONSE OF THE
GENERALIZED MATHIEU EQUATION

By using the Floquet theory, it is possible to verify that
the general solution to eq. (7) is a linear combination of two
periodic functions, whose frequencies are given by ωD and
the imaginary part of the characteristic exponent, say γ [8].
Depending on the sign of the <(γ), one of the solutions is
either bounded or unbounded, and so defining the the stability
of the general solution. Therefore, if <[γ(ε,∆)] > 0 (< 0),
the system is said to be unstable (stable). In fig. (1) we plot
the first stability regions in the Strutt chart of (7), for the case
of π and 2π-periodic solutions.

Under the physical and experimental point of view, there
are three cases of major interest: (a) the wave frequency is
much lower than the dipole frequency, ∆� ωD; (b) the wave
and dipole frequencies have the same order of magnitude, ∆ ≈
ωD; and (c) the wave frequency is much higher than the dipole
frequency, ∆� ωD. However, given the nature of this work,
only one case may be enough to motivate a feedback control
problem, so we decide to explore the resonant case ∆ = 2.

IV. DESIGN OF A FEEDBACK CONTROL SYSTEM

Equation (7) does not envisage the usual PID methods [9]
used to control linear systems. Therefore, we should adopt
solutions which are typical of time-dependend or even nonlin-
ear analysis. Depending on the design goals, there are several



Fig. 2. Time evolution (left) and phase-space portraits (right) of the stable
(bounded) solutions of Eq. (7) plotted for different stability zones. From top
to bottom: ∆ = 0.5, ε = 0.2; ∆ = 2.0, ε = 1.0; ∆ = 8.0, ε = 2.0.

Fig. 3. Unstable solution of eq. (7) ploted for ∆ = 2 and ε = 2.1.

formulations of the control problem. The tasks of stabilization,
tracking and disturbance rejection or attenuation (or even
combinations of them) lead to a large number of choices [12].
In each one, one may have a state feedback version where all
state variables can be measured or an output feedback version
where only few variables can be measured. Other solutions
are related rather with stochastic than deterministic methods,
like fuzzy-logic control [10]. In a typical control problem,
there are additional tasks for the design, like meeting certain
requirements on the transient response or certain constraints on
the control input, recurrently related to hardware or software
limitations. When model uncertainty is taken into account,
issues of sensitivity and robustness play an important role.

Therefore, the attempt to design a feedback control system to
cope with a wide range of uncertainty models leads to either
robust or adaptive control systems.

In this work, we will limit our discussion to the case of a
disturbance rejection problem. At the end of this section, we
devote some attention to the main reasons for that choice.

If we define the output vector x(τ) ≡ (x1(τ), x2(τ)) =
(Ã(τ), ˙̃A(τ)), we can rewrite (7) in the form

ẋ(τ) = A(τ) · x(τ), (8)

where A(τ) represents the matrix of the time-dependent
dynamical system

A(τ) =
[

0 1
−∆− 2ε cos(2τ) −2ε sin(2τ)

]
. (9)

The stabilization problem is generally given by

ẋ(τ) = f(τ,x,u), (10)

where u = g(τ,x) is the control law. Such a control law
is usually called ”static feedback”, because is memoryless in
respect to the state vector x. Sometimes u(τ − τ0) is a time-
delayed control function, since the attempt of designing a state
feedback control that depends on the measurement of a set
of output variables often introduces a certain delay τ0 on the
response [11]. In that cases, it is common to design a dynamic
feedback control u = g(τ,x, z), where z is the solution of a
dynamical system driven by x, given by ż = h(τ,x, z).

We are interested in a disturbance rejection problem, so
we should design a feedback control law u such that the
origin x = 0 is an asymptotically stable equilibrium point of
the closed-loop (10), regardless the fact that a more general
solution could be adopted to stabilize the system in respect to
an arbitrary steady-state point xss. Since the system is linear,
and assuming the possibility of making a continuos reading of
the state variables at each time τ , the closed-loop system can
be written in the form

ẋ(τ) = A(τ) · x(τ)−KB · x(τ − τ0), (11)

where the control law u = −Kx(τ−τ0) preserves the linearity
of the open-loop system. Here, B is a matrix of parameters.
In the case of no delay, τ0 = 0, we know that the origin is an
asymptotically stable point if, and only if, A−KB is Hurwitz,
i.e., if the real part of the ist eigenvalues are negative. For the
general case τ0 6= 0, we should use numerical calculations.

Although the parameters ∆ and ε are time independent,
it is expected that they contain a certain error, since they
depend upon the experimental conditions, in a more realistic
approach. Therefore, the robustness of the negative feedback
control system presented in (11) should be tested. For the
sake of illustration, in fig. (IV)we present several situation of
stabilization for an unstable solution of (7). First, we set either
the delay time τ0 and the errors associated to the parameters
to zero. Sencond, we assume the existence of a finite time-
delay in the response of the control law function. Finally, we



Fig. 4. (Color Online) Examples of control of the unbounded solution
presented in fig. (3). Solutions obtained in the time domain (left) and in
the phase-space domain (right) for five different orbits. From top to bottom:
Simple negative feedback; negative feedback with time delay of τ0 = 0.3,
and negative feedback with gaussian noise (σ∆ = 2, σε = 2).

assume that the errors on the parameters follow a gaussian
distribution with zero mean value and variances σ∆ and σε.

In the case where τ0 = 0 and σ∆ = σε = 0, the
unstable solution of the open-loop system is stabilized at the
origin, without exhibiting any transient regime. In the second
stabilization scheme, the time delay is set to 0.3, the solution
tends to zero after a transient regime around τtrans = 20.
In the last case, we can observe that the introduction of a
bandwidth of σ∆ = σε = 2 in the parametric noise lead to
a quasi-periodic stable solution, in opposition to the previous
situations. However, because our aim is to avoid the occurrence
of instabilities rather than zero-point stabilization, the later
simulation suggests that this control system is robust to the
noise.

We have restricted our discussion to the disturbance rejec-
tion problem for reasons that have to deal with the experimen-
tal conditions. In a typical MOT experiment, we are interested
in cooling down the atoms, by decreasing their kinetic energy
to zero. Instabilities obviously bring the system out of such
configuration, preventing the atoms to be cooled and trapped.
The design of a control system based on a defined steady-
state configuration would also lead to similar results, since
the disturbance rejection problem is only a particular case of
the later.

V. CONCLUSION

The description of a cold Bose gas with a set of effective
fluid equations opens place to the occurrence of plasma-like
waves. Because of the trapping used in the typical experi-
mental setups, the system oscillates at the dipole frequency,
which is roughly defined by the magnetic field conditions.
In such conditions, it is possible to predict the couple be-
tween the waves and the dipole oscillations. This system of
coupled modes is described by a time-dependent model that
generalizes the well-known Mathieu equation. It is shown that
this equation exhibits unstable solutions, which may result
in a source of instabilities that should be stabilized in the
context of experimental work. Hence, the design of a negative
feedback control system is of great interest. In the present
work, we show that a simple time-dependent control law, based
on the measurement of the open-loop state variables, should
be considered as an efficient way of stabilizing the system.
We purpose an extension of the usual techniques in control
of linear time-dependent systems by including delaying and
noise in the response functions.
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