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Abstract—An algorithm for performing compression and 

encryption simultaneously using a chaotic map is proposed. 

The look-up table used for encryption is determined adaptively 

by the probability of occurrence of plaintext symbols. As a 

result, more probable symbols will have a higher chance to be 

visited by the chaotic search trajectory. The required number 

of iterations is small and can be represented by a short code. 

The compression capability is thus achieved. Simulation results 

show that the compression performance on standard test data 

and image files is satisfactory while the security is not 

compromised. Therefore, our scheme can be applied for 

lossless data and lossy image compression.  
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I.INTRODUCTION 

n recent years, the size of multimedia files as well as the 
need for the secure transmission of confidential data over 
public networks keeps rising. This leads to a growing 

interest in the investigation of joint operation of 
compression and encryption on the same set of data, i.e., 
perform these two operations simultaneously, instead of 
separately. There are in general two different research 
directions in this area, to embed encryption into 
compression algorithms or to incorporate compression in 
cryptographic schemes.  

It is natural to embed encryption in entropy coding such 
as arithmetic coding and Huffman coding since both 
cryptographic ciphers and entropy coders bear certain 
resemblance in the sense of secrecy. An entropy coder is 
easy to be turned to a cipher by using a secret key to govern 
the statistical model used in coding. The decoder can track 
the changes in the statistical model and produces the correct 
output only if the secret key is available. 

The work of embedding encryption into arithmetic coding 
mainly focused on the control of interval allocation using a 
secret key. In [1], an arithmetic coding scheme with the 
functions of encryption, data compression and error 
detection was proposed. Another scheme utilizes a 
randomized arithmetic coding paradigm based on key-
controlled interval swapping [2]. There was also a 
suggestion to combine binary arithmetic coding with 
encryption [3]. By incorporating permutation at the input 
and output of the encoder, the same research group has 
recently proposed a modified arithmetic coding scheme with 
a higher security but negligible coding efficiency penalty 
[4]. Besides arithmetic coding, other entropy coding 
schemes such as Huffman coding can also be used for 
embedding encryption. In [5], a scheme based on multiple 

Huffman tables was proposed. However, it was lately found 
that this approach suffers from the chosen-plaintext attack if 
the Huffman tables are not selected properly [6]. 

There are some reports on the use of chaos in the joint 
operation of compression and encryption. In [7], a chaos-
based adaptive arithmetic coding technique was proposed. 
The arithmetic coder’s statistical model is made varying in 
nature according to a pseudo-random bitstream generated by 
coupled chaotic systems. A similar idea was reported in [8] 
that the mapping intervals of the arithmetic coder are 
changed irregularly using a keystream generated from both 
the chaotic logistic map and the plaintext. A chaotic stream 
cipher for the selective encryption of video streams was 
proposed recently [9]. Among all the data in the video 
stream, only the encoded discrete cosine transform (DCT) 
coefficients and the sign of the motion vector are encrypted 
by masking them with a pseudo-random bit sequence 
generated by two piecewise linear chaotic maps. While all 
these papers [7-9] utilize chaos in their schemes, they are 
actually not based on the architecture of chaotic systems, but 
rather built on the framework of compression such as 
entropy coding or transform coding. Chaotic systems only 
play the role of pseudo-random bitstream generators there. 

In this paper, an approach for embedding compression in 
the Baptista-type chaotic cryptosystem [10] is proposed. It 
roots on the architecture of chaotic cryptosystems rather 
than the compression framework. The look-up table used for 
encryption is determined adaptively by the probability of 
occurrence of plaintext symbols. As a result, more probable 
symbols will have a higher chance to be visited by the 
chaotic search trajectory. The required number of iterations 
is thus small and so can be represented by a short code. 
Simulation results verify that the proposed scheme can 
compress standard test files to a satisfactory degree while 
performing the encryption. Moreover, our scheme ensures 
that the ciphertext is not longer than the plaintext. 

The rest of this paper is organized as follows. In next 
section, the Baptista-type chaotic cryptosystem is reviewed. 
Our approach for embedding compression in this class of 
chaotic cryptosystem is described in Section III. Simulation 
results and analyses can be found in Section IV. In the last 
section, conclusions will be drawn. 

II.BAPTISTA-TYPE CHAOTIC CRYPTOSYSTEM 

Simple one-dimensional chaotic maps such as the logistic 
map and the tent map are usually employed for data and 
document encryption. A typical chaos-based cryptographic 
scheme was proposed by Baptista [10]. The phase space of 
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the logistic map is divided into a number of equal-width 
partitions, each maps to a possible plaintext symbol 
uniquely. A secret chaotic trajectory generated from the 
key-dependent chaotic map parameters and initial condition 
is utilized to search for the partition mapped to the plaintext 
symbol being encrypted. The length of the searching 
trajectory is equal to the number of iterations of the logistic 
map, which is then taken as the ciphertext. In other words, 
the partitioned phase space together with the corresponding 
plaintext mapping can be considered as a look-up table or a 
codebook for encryption. In the decryption process, the 
same secret chaotic search trajectory is re-generated and the 
correct plaintext symbols are recovered only if the same 
secret key and the look-up table are available.  

There are some variants of the Baptista-type chaotic 
cryptosystem. Wong et al modified it to obtain a flatter 
ciphertext distribution [11]. A dynamic look-up table 
version was proposed so that the mapping between the 
phase space partitions and the plaintext symbols keeps 
changing for different plaintext blocks [12]. As the look-up 
table is updated dynamically according to the order of 
appearance of plaintext symbols, it is plaintext dependent 
and can be considered as a hash or message authentication 
code (MAC) of the plaintext sequence [13]. In [14], the 
Baptista-type chaotic cryptographic scheme was further 
analyzed in detail.  

Like other cryptographic schemes, attempts to crack the 

original Baptista-type chaotic cryptosystem and its variants 

were made [15, 16]. The causes of vulnerability were 

investigated and remedial operations were suggested [17-

19]. 

The Baptista-type chaotic cryptosystem suffers from the 
problem of long ciphertext which is usually about 1.5 to 
twice the plaintext length [10, 17]. A short-ciphertext 
variant was suggested in [20] so that the ciphertext is only 
slightly longer than the plaintext by a short header. 
Nevertheless, it is believed that the ciphertext cannot be 
shorter than the plaintext for this type of cryptosystems. In 
the next section, an algorithm for incorporating compression 
in Baptista-type chaotic cryptosystems is proposed for 
lossless and lossy compression. 

III.THE PROPOSED APPROACH 

The proposed approach of performing compression and 

encryption simultaneously can be applied in three different 

areas, namely, lossless data compression using zero-order 

and first-order plaintext entropy, and also lossy image 

compression. 

A. Lossless Data Compression using Zero-order Entropy 

In this approach, the dynamic look-up table is built 
adaptively using the plaintext zero-order entropy. By doing 
so, certain compression capability is achieved along with 
encryption while the security is not compromised. 

First, the whole plaintext sequence is scanned once to find 
out the probability of occurrence of each plaintext symbol. 
The phase space of the chaotic map is divided into a number 
of fixed-width partitions and the number of partitions 
mapped to a particular symbol is proportional to its 
probability of occurrence. As an example, suppose that there 
are only 4 possible plaintext symbols (A, B, C, D) with 

probability of occurrence 0.5, 0.25, 0.125, and 0.125, 
respectively. If the phase space (0,1) is divided into 256 
partitions, then 128 of them should map to symbol A, 64 to 
symbol B, 32 to symbol C, and finally 32 to symbol D, as 
shown in Fig. 1. It should be noticed that the partitions 
mapped to the same symbol are not necessarily at adjacent 
positions. 

 

 

 

 

 

 

 

 Fig. 1 Mapping of plaintext symbols to partitions in the 
phase space of the chaotic map. 

The advantage of having more partitions for more 
probable symbols is that the chance for the chaotic 
trajectory to land on those partitions is also higher. As a 
result, the required number of iterations is smaller and fewer 
bits are used to encode it. For example, if each plaintext 
symbol is represented by a byte and the chaotic search 
trajectory usually lands on the target partition corresponding 
to that symbol within 16 iterations. Then a maximum of 4 
bits are required for encoding and the ciphertext for that 
symbol is equal to or shorter than half of the plaintext 
symbol length. This leads to the compression capability. 

While the number of iterations for more probable symbols 

is small, it can be very large for less probable symbols since 

there are only one or a few partitions mapped to them. 

Therefore we cannot include all the plaintext symbols in the 

mapping table, but can only choose a limited number of 

more probable ones. Less probable symbols not found in the 

mapping table are encrypted by masking them with a 

pseudo-random bitstream also generated by the chaotic map. 

As a result, the proposed compression and encryption 

scheme can be considered as a hybrid one: more probable 

symbols are encrypted by searching in the dynamic look-up 

table like block ciphers while less probable ones are masked 

by a pseudo-random bitstream as performed in stream 

ciphers. A special symbol is required to distinguish between 

these two modes and it causes certain overhead to the 

ciphertext. If this overhead exceeds the gain from 

encrypting more probable symbols, the ciphertext will 

become longer than the plaintext. In this case, the whole 

plaintext sequence will be encrypted solely by masking so 

as to ensure that the ciphertext is not longer than the 

plaintext. 

B. Lossless Data Compression using First-order Entropy 

Besides using the zero-order entropy of the plaintext, 

the first-order one can also be utilized. This means that the a 

priori information of the relationship between consecutive 

plaintext symbols is used to build the look-up table 

adaptively. By doing so, the chance for the chaotic 

trajectory to fall into the target partitions increases. The 

number of iterations required is then small and can be 

encoded by a short code.  
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Suppose that there are a total of S possible symbols in 

the plaintext sequence. For each symbol, scan the whole 

plaintext sequence to find out all the symbols immediately 

after it. Then sort them in descending order according to 

their number of occurrence and select the top K symbols 

only. As a result, each symbol si has its own set Ni = {ni1, ni2, 

ni3, …, niK} of more probable next symbols, where i=1, 2, 

…, S. The storage requirement could be very large if the 

number of occurrence of these K more probable next 

symbols is stored for each symbol. Therefore the average is 

taken instead so that all the symbols share the same model 

of probability of occurrence of next symbols, P={p1, p2, … 

pK} where pj is a byte value given by Eq. (1). 
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where u(nij) is the number of occurrence of next symbol 

nij. 

Encrypt the plaintext sequentially by finding the 

previous symbol and then use the corresponding set Ni. 

For the first plaintext symbol, there is no previous 

symbol and so we arbitrarily choose it as 0. Divide the 

phase space of the chaotic map into M equal-width 

partitions, with M > K. Starting from ni1, map the K more 

probable next symbols to the M partitions randomly 

according to criterion given by Eq. (2), until all the 

partitions are mapped. 
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where v(nij) is the number of partitions mapped to nij. 

C. Lossy Image Compression 

For lossless joint compression and encryption, the 
reconstructed plaintext must be identical to the original one. 
No error or tolerance is allowed. However, for the lossy 
counterpart, certain amount of error or tolerance is allowed. 
This means that we don’t need to find out the exactly 
matched symbol in the codebook. A nearby one is still 
acceptable. Under the framework of lossless joint 
compression and encryption mentioned above, this tolerance 
relaxes the restriction for the chaotic search trajectory to 
land on the partition exactly mapped to the symbol to be 
encoded. In fact, a single partition can be mapped to a group 
of symbols close to each other. If there is overlapping in the 
grouping of symbols, a particular symbol may belong to 
more than one group and the chance of getting the chaotic 
search orbit to land on the target partitions is higher. The 
corresponding number of iterations is fewer and the 
compression ratio is improved. In the decoding process, 
each partition maps to the mean value of the group of 
symbols, which is then used to represent all the symbols 
belonging to this group, similar to the principle of vector 
quantization. 

There is another implementation of this relaxation. 
Instead of having multiple symbols mapped to a single 
partition, each partition is mapped to one symbol only. 
However, there is tolerance on the requirement of matching. 
For example, if the plaintext symbol is 97 and the chosen 
tolerance limit is 5, the chaotic trajectory landed on any one 
of the partitions mapped to symbols within the range of 92 
to 102 is said to have hit the target. Again, the 
corresponding number of iterations is fewer and the 
compression ratio is raised. 

IV.SIMULATION RESULTS 

To implement the proposed algorithm for joint operation 

of compression and encryption, the logistic map given by 

Eq. (3) is chosen as the chaotic map.  

   )1(1 nnn xbxx −=
+

                                                    (3) 

The gain b is selected as 3.999999991 while the initial 

condition x0 is 0.3388. The plaintext symbols are read in 

bytes and the chaotic map phase space is divided into 256 

equal-width partitions. The maximum number of iterations 

for the search mode is chosen as 15. The proposed algorithm 

is implemented in C++ programming language running on a 

personal computer with an Intel Core2 2.13GHz processor 

and 1GB memory. The following data are collected. 

To test the compression capability of the proposed 

scheme, the standard files from the Calgary Corpus are used 

[21]. There are 18 distinct files of different types, including 

text, executable, geophysical data and picture. Two 

simulation configurations are chosen for zero-order entropy. 

The first one is that only 16 more probable plaintext 

symbols are selected and they are all mapped to one table. In 

the second case, 128 more probable plaintext symbols are 

chosen and they are distributed to 16 tables, each has 8 

symbols. The ciphertext-to-plaintext ratio (R) calculated by 

Eq. (4) is listed in Table 1. 

   %100
LengthPlaintext

LengthCiphertext
×=R                                      (4) 

 

TABLE 1: CIPHERTEXT-TO-PLAINTEXT RATIO OF THE CALGARY CORPUS 

FILES USING ZERO-ORDER ENTROPY. 

File 1 map, 16 symbols 16 maps,  8 symbols each 

pic 32.88% 31.43% 

book1 83.36% 71.09% 

paper2 83.95% 72.19% 

paper3 84.30% 73.54% 

paper4 84.27% 73.97% 

progl 86.00% 74.82% 

book2 85.05% 75.43% 

paper5 86.30% 77.50% 

progp 85.63% 77.73% 

paper1 86.88% 78.38% 

paper6 87.12% 78.81% 

news 87.97% 81.73% 

progc 88.74% 82.15% 

bib 89.07% 82.34% 

geo 83.98% 85.22% 

trans 93.25% 86.98% 

obj1 88.60% 89.62% 

obj2 92.85% 94.03% 

 



Table 1 shows that all files can be compressed using the 
two configurations. However, the compression performance 
of the second configuration (16 maps, 8 symbols each) is 
better for most of the files. The image file (pic) is the easiest 
to compress due to the redundancy of image pixels. The 
corresponding ciphertext length is about one-third the 
plaintext length. The executable files (obj1 and obj2) are the 
most difficult to compress as the distribution of plaintext 
symbols is comparatively uniform. The corresponding 
ciphertext sequences are only about 10% shorter than the 
plaintext ones.  

The compression performance using first-order entropy 
can be found in Table 2. Eight next symbols, i.e., K=8, are 
selected. The data in the bracket of the rightmost column are 
the ratio when the necessary secret parameters are included 
as a header of the ciphertext. All the values are below 100% 
which imply that all the files can be compressed. The 
performance is the best for the pic file that the ciphertext 
length is only about one-third of the plaintext, due to the 
high redundancy in the picture. 

TABLE 2: CIPHERTEXT-TO-PLAINTEXT RATIO OF THE CALGARY CORPUS 

FILES USING FIRST-ORDER ENTROPY. 

File Size (byte) Ciphertext-to-plaintext ratio (With Header) 

pic 513,216 31.67% (32.11%) 

progp 49,379 68.31% (72.87%) 

progl 71,646 69.49% (72.63%) 

paper4 13,286 71.90% (88.76%) 

paper5 11,954 72.08% (90.84%) 

paper2 82,199 72.20% (74.94%) 

trans 93,695 72.23% (74.64%) 

obj1 21,504 72.71% (83.16%) 

bib 111,261 72.81% (74.84%) 

paper3 46,526 72.85% (77.68%) 

progc 39,611 73.39% (79.08%) 

paper6 38,105 73.49% (79.39%) 

book1 768,771 73.50% (73.79%) 

paper1 53,161 74.07% (78.30%) 

book2 610,856 74.68% (75.05%) 

obj2 246,814 74.74% (75.65%) 

news 377,109 78.63% (79.23%) 

geo 102,400 79.27% (81.47%) 

The performance of our algorithm for lossy image 
compression is tested using eight standard 512 x 512 gray-
scale images in bitmap format. The tolerance limit of the 
pixel value is set to 20. The ciphertext-to-plaintext ratio can 
be found in Table 3. It ranges from around 25% to 43% 
which shows that the compression performance is 
satisfactory. The corresponding peak signal-to-noise ratio 
(PSNR) of the reconstructed image is around 30dB. 

TABLE 3: CIPHERTEXT-TO-PLAINTEXT RATIO OF LOSSY IMAGE 

COMPRESSION. 

Image 
Original Size 

(byte) 

Ciphertext-to-plaintext ratio 

(With Header) 

goldhill 262,144 24.80%  (25.66%) 

lena 262,144 25.65%  (26.51%) 

sailboat 262,144 27.18%  (28.04%) 

peppers 262,144 28.63%  (29.49%) 

frog512 262,144 31.48%  (32.34%) 

aerial 262,144 35.57%  (36.43%) 

barb 262,144 40.17%  (41.03%) 

baboon 262,144 41.91%  (42.77%) 

To evaluate the key sensitivity, encryptions using the 

all-mask mode for first-order entropy were performed by 

introducing a very small change in one of the secret 

parameters. Then the resultant ciphertext sequence is 

compared with the original one bit-by-bit and the 

percentage of bit change is calculated. For parameters b 

and x0, the 15
th

 digit after decimal point is changed from 

0 to 1. For c-1, the least significant bit (bit 0) is toggled 

from 0 to 1. The measured bit change percentages are 

49.97%, 50.03% and 49.99% for b, x0 and c-1, 

respectively. All the data are close to 50% which indicate 

that the ciphertext is very sensitive to the key. 

To measure the plaintext sensitivity, a bit is changed at 

different positions of the plaintext sequence while the key 

remains unchanged. The two resultant ciphertext 

sequences are compared bit-by-bit and the percentage of 

bit change is calculated. The results are 50.00% (bit 

change at the beginning of plaintext), 50.03% (middle) 

and 49.98% (end), respectively. They are all close to 

50%, which imply that the ciphertext is very sensitive to 

the plaintext. 
The randomness of the binary mask sequence is 

confirmed by the statistical test suite recommended by the 
U.S. National Institute of Standards and Technology (NIST) 
[22]. Ten sequences, each of 1,000,000 bits, are extracted 
for testing and they all pass the statistical tests including 
frequency, block-frequency, cumulative-sums, runs, longest-
run, rank, and FFT. 

V. CONCLUSION 

 An algorithm for the simultaneous compression and 

encryption using chaotic maps has been proposed. It can be 

applied to lossless data compression as well as lossy image 

compression. The effectiveness of the proposed scheme is 

confirmed by the satisfactory ciphertext-to-plaintext ratio 

using standard data and image files. Simulation results 

verify that the ciphertext is very sensitive to a tiny change in 

the key or the plaintext and so the security is maintained. 
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