
Performing Compression and Encryption

Simultaneously using Chaotic Map

Kwok-Wo Wong

Department of Electronic Engineering

City University of Hong Kong

Hong Kong, P.R. China

itkwwong@cityu.edu.hk

Ching-Hung Yuen

Department of Electronic Engineering

City University of Hong Kong

Hong Kong, P.R. China

chyuen@cityu.edu.hk

Abstract—An algorithm for performing compression and

encryption simultaneously using a chaotic map is proposed.

The look-up table used for encryption is determined adaptively

by the probability of occurrence of plaintext symbols. As a

result, more probable symbols will have a higher chance to be

visited by the chaotic search trajectory. The required number

of iterations is small and can be represented by a short code.

The compression capability is thus achieved. Simulation results

show that the compression performance on standard test data

and image files is satisfactory while the security is not

compromised. Therefore, our scheme can be applied for

lossless data and lossy image compression.

Keywords— chaos, cryptography, compression, encoding

I.INTRODUCTION

n recent years, the size of multimedia files as well as the
need for the secure transmission of confidential data over
public networks keeps rising. This leads to a growing

interest in the investigation of joint operation of
compression and encryption on the same set of data, i.e.,
perform these two operations simultaneously, instead of
separately. There are in general two different research
directions in this area, to embed encryption into
compression algorithms or to incorporate compression in
cryptographic schemes.

It is natural to embed encryption in entropy coding such
as arithmetic coding and Huffman coding since both
cryptographic ciphers and entropy coders bear certain
resemblance in the sense of secrecy. An entropy coder is
easy to be turned to a cipher by using a secret key to govern
the statistical model used in coding. The decoder can track
the changes in the statistical model and produces the correct
output only if the secret key is available.

The work of embedding encryption into arithmetic coding
mainly focused on the control of interval allocation using a
secret key. In [1], an arithmetic coding scheme with the
functions of encryption, data compression and error
detection was proposed. Another scheme utilizes a
randomized arithmetic coding paradigm based on key-
controlled interval swapping [2]. There was also a
suggestion to combine binary arithmetic coding with
encryption [3]. By incorporating permutation at the input
and output of the encoder, the same research group has
recently proposed a modified arithmetic coding scheme with
a higher security but negligible coding efficiency penalty
[4]. Besides arithmetic coding, other entropy coding
schemes such as Huffman coding can also be used for
embedding encryption. In [5], a scheme based on multiple

Huffman tables was proposed. However, it was lately found
that this approach suffers from the chosen-plaintext attack if
the Huffman tables are not selected properly [6].

There are some reports on the use of chaos in the joint
operation of compression and encryption. In [7], a chaos-
based adaptive arithmetic coding technique was proposed.
The arithmetic coder’s statistical model is made varying in
nature according to a pseudo-random bitstream generated by
coupled chaotic systems. A similar idea was reported in [8]
that the mapping intervals of the arithmetic coder are
changed irregularly using a keystream generated from both
the chaotic logistic map and the plaintext. A chaotic stream
cipher for the selective encryption of video streams was
proposed recently [9]. Among all the data in the video
stream, only the encoded discrete cosine transform (DCT)
coefficients and the sign of the motion vector are encrypted
by masking them with a pseudo-random bit sequence
generated by two piecewise linear chaotic maps. While all
these papers [7-9] utilize chaos in their schemes, they are
actually not based on the architecture of chaotic systems, but
rather built on the framework of compression such as
entropy coding or transform coding. Chaotic systems only
play the role of pseudo-random bitstream generators there.

In this paper, an approach for embedding compression in
the Baptista-type chaotic cryptosystem [10] is proposed. It
roots on the architecture of chaotic cryptosystems rather
than the compression framework. The look-up table used for
encryption is determined adaptively by the probability of
occurrence of plaintext symbols. As a result, more probable
symbols will have a higher chance to be visited by the
chaotic search trajectory. The required number of iterations
is thus small and so can be represented by a short code.
Simulation results verify that the proposed scheme can
compress standard test files to a satisfactory degree while
performing the encryption. Moreover, our scheme ensures
that the ciphertext is not longer than the plaintext.

The rest of this paper is organized as follows. In next
section, the Baptista-type chaotic cryptosystem is reviewed.
Our approach for embedding compression in this class of
chaotic cryptosystem is described in Section III. Simulation
results and analyses can be found in Section IV. In the last
section, conclusions will be drawn.

II.BAPTISTA-TYPE CHAOTIC CRYPTOSYSTEM

Simple one-dimensional chaotic maps such as the logistic
map and the tent map are usually employed for data and
document encryption. A typical chaos-based cryptographic
scheme was proposed by Baptista [10]. The phase space of

I

the logistic map is divided into a number of equal-width
partitions, each maps to a possible plaintext symbol
uniquely. A secret chaotic trajectory generated from the
key-dependent chaotic map parameters and initial condition
is utilized to search for the partition mapped to the plaintext
symbol being encrypted. The length of the searching
trajectory is equal to the number of iterations of the logistic
map, which is then taken as the ciphertext. In other words,
the partitioned phase space together with the corresponding
plaintext mapping can be considered as a look-up table or a
codebook for encryption. In the decryption process, the
same secret chaotic search trajectory is re-generated and the
correct plaintext symbols are recovered only if the same
secret key and the look-up table are available.

There are some variants of the Baptista-type chaotic
cryptosystem. Wong et al modified it to obtain a flatter
ciphertext distribution [11]. A dynamic look-up table
version was proposed so that the mapping between the
phase space partitions and the plaintext symbols keeps
changing for different plaintext blocks [12]. As the look-up
table is updated dynamically according to the order of
appearance of plaintext symbols, it is plaintext dependent
and can be considered as a hash or message authentication
code (MAC) of the plaintext sequence [13]. In [14], the
Baptista-type chaotic cryptographic scheme was further
analyzed in detail.

Like other cryptographic schemes, attempts to crack the

original Baptista-type chaotic cryptosystem and its variants

were made [15, 16]. The causes of vulnerability were

investigated and remedial operations were suggested [17-

19].

The Baptista-type chaotic cryptosystem suffers from the
problem of long ciphertext which is usually about 1.5 to
twice the plaintext length [10, 17]. A short-ciphertext
variant was suggested in [20] so that the ciphertext is only
slightly longer than the plaintext by a short header.
Nevertheless, it is believed that the ciphertext cannot be
shorter than the plaintext for this type of cryptosystems. In
the next section, an algorithm for incorporating compression
in Baptista-type chaotic cryptosystems is proposed for
lossless and lossy compression.

III.THE PROPOSED APPROACH

The proposed approach of performing compression and

encryption simultaneously can be applied in three different

areas, namely, lossless data compression using zero-order

and first-order plaintext entropy, and also lossy image

compression.

A. Lossless Data Compression using Zero-order Entropy

In this approach, the dynamic look-up table is built
adaptively using the plaintext zero-order entropy. By doing
so, certain compression capability is achieved along with
encryption while the security is not compromised.

First, the whole plaintext sequence is scanned once to find
out the probability of occurrence of each plaintext symbol.
The phase space of the chaotic map is divided into a number
of fixed-width partitions and the number of partitions
mapped to a particular symbol is proportional to its
probability of occurrence. As an example, suppose that there
are only 4 possible plaintext symbols (A, B, C, D) with

probability of occurrence 0.5, 0.25, 0.125, and 0.125,
respectively. If the phase space (0,1) is divided into 256
partitions, then 128 of them should map to symbol A, 64 to
symbol B, 32 to symbol C, and finally 32 to symbol D, as
shown in Fig. 1. It should be noticed that the partitions
mapped to the same symbol are not necessarily at adjacent
positions.

 Fig. 1 Mapping of plaintext symbols to partitions in the
phase space of the chaotic map.

The advantage of having more partitions for more
probable symbols is that the chance for the chaotic
trajectory to land on those partitions is also higher. As a
result, the required number of iterations is smaller and fewer
bits are used to encode it. For example, if each plaintext
symbol is represented by a byte and the chaotic search
trajectory usually lands on the target partition corresponding
to that symbol within 16 iterations. Then a maximum of 4
bits are required for encoding and the ciphertext for that
symbol is equal to or shorter than half of the plaintext
symbol length. This leads to the compression capability.

While the number of iterations for more probable symbols

is small, it can be very large for less probable symbols since

there are only one or a few partitions mapped to them.

Therefore we cannot include all the plaintext symbols in the

mapping table, but can only choose a limited number of

more probable ones. Less probable symbols not found in the

mapping table are encrypted by masking them with a

pseudo-random bitstream also generated by the chaotic map.

As a result, the proposed compression and encryption

scheme can be considered as a hybrid one: more probable

symbols are encrypted by searching in the dynamic look-up

table like block ciphers while less probable ones are masked

by a pseudo-random bitstream as performed in stream

ciphers. A special symbol is required to distinguish between

these two modes and it causes certain overhead to the

ciphertext. If this overhead exceeds the gain from

encrypting more probable symbols, the ciphertext will

become longer than the plaintext. In this case, the whole

plaintext sequence will be encrypted solely by masking so

as to ensure that the ciphertext is not longer than the

plaintext.

B. Lossless Data Compression using First-order Entropy

Besides using the zero-order entropy of the plaintext,

the first-order one can also be utilized. This means that the a

priori information of the relationship between consecutive

plaintext symbols is used to build the look-up table

adaptively. By doing so, the chance for the chaotic

trajectory to fall into the target partitions increases. The

number of iterations required is then small and can be

encoded by a short code.

x = 1

256

fixed-width

partitions

total 32

partitions for C

D

C

B

x = 0

x = 0.0039

x = 0.0078

B

A

A

A

A

. . . .

x = 0.0117

x = 0.0156

x = 0.9844

x = 0.9883

x = 0.9922

x = 0.9961

total 32

partitions for D

total 128

partitions for A
total 64

partitions

for B

Suppose that there are a total of S possible symbols in

the plaintext sequence. For each symbol, scan the whole

plaintext sequence to find out all the symbols immediately

after it. Then sort them in descending order according to

their number of occurrence and select the top K symbols

only. As a result, each symbol si has its own set Ni = {ni1, ni2,

ni3, …, niK} of more probable next symbols, where i=1, 2,

…, S. The storage requirement could be very large if the

number of occurrence of these K more probable next

symbols is stored for each symbol. Therefore the average is

taken instead so that all the symbols share the same model

of probability of occurrence of next symbols, P={p1, p2, …

pK} where pj is a byte value given by Eq. (1).

 1256

)(

)(

1 1

1
+



















×=

∑∑

∑

= =

=

S

i

K

j

ij

S

i

ij

j

nu

nu

p (1)

where u(nij) is the number of occurrence of next symbol

nij.

Encrypt the plaintext sequentially by finding the

previous symbol and then use the corresponding set Ni.

For the first plaintext symbol, there is no previous

symbol and so we arbitrarily choose it as 0. Divide the

phase space of the chaotic map into M equal-width

partitions, with M > K. Starting from ni1, map the K more

probable next symbols to the M partitions randomly

according to criterion given by Eq. (2), until all the

partitions are mapped.

 1)(

1

+



















×=

∑
=

M

p

p
nv

K

j

j

j

ij
 (2)

where v(nij) is the number of partitions mapped to nij.

C. Lossy Image Compression

For lossless joint compression and encryption, the
reconstructed plaintext must be identical to the original one.
No error or tolerance is allowed. However, for the lossy
counterpart, certain amount of error or tolerance is allowed.
This means that we don’t need to find out the exactly
matched symbol in the codebook. A nearby one is still
acceptable. Under the framework of lossless joint
compression and encryption mentioned above, this tolerance
relaxes the restriction for the chaotic search trajectory to
land on the partition exactly mapped to the symbol to be
encoded. In fact, a single partition can be mapped to a group
of symbols close to each other. If there is overlapping in the
grouping of symbols, a particular symbol may belong to
more than one group and the chance of getting the chaotic
search orbit to land on the target partitions is higher. The
corresponding number of iterations is fewer and the
compression ratio is improved. In the decoding process,
each partition maps to the mean value of the group of
symbols, which is then used to represent all the symbols
belonging to this group, similar to the principle of vector
quantization.

There is another implementation of this relaxation.
Instead of having multiple symbols mapped to a single
partition, each partition is mapped to one symbol only.
However, there is tolerance on the requirement of matching.
For example, if the plaintext symbol is 97 and the chosen
tolerance limit is 5, the chaotic trajectory landed on any one
of the partitions mapped to symbols within the range of 92
to 102 is said to have hit the target. Again, the
corresponding number of iterations is fewer and the
compression ratio is raised.

IV.SIMULATION RESULTS

To implement the proposed algorithm for joint operation

of compression and encryption, the logistic map given by

Eq. (3) is chosen as the chaotic map.

)1(1 nnn xbxx −=
+

 (3)

The gain b is selected as 3.999999991 while the initial

condition x0 is 0.3388. The plaintext symbols are read in

bytes and the chaotic map phase space is divided into 256

equal-width partitions. The maximum number of iterations

for the search mode is chosen as 15. The proposed algorithm

is implemented in C++ programming language running on a

personal computer with an Intel Core2 2.13GHz processor

and 1GB memory. The following data are collected.

To test the compression capability of the proposed

scheme, the standard files from the Calgary Corpus are used

[21]. There are 18 distinct files of different types, including

text, executable, geophysical data and picture. Two

simulation configurations are chosen for zero-order entropy.

The first one is that only 16 more probable plaintext

symbols are selected and they are all mapped to one table. In

the second case, 128 more probable plaintext symbols are

chosen and they are distributed to 16 tables, each has 8

symbols. The ciphertext-to-plaintext ratio (R) calculated by

Eq. (4) is listed in Table 1.

 %100
LengthPlaintext

LengthCiphertext
×=R (4)

TABLE 1: CIPHERTEXT-TO-PLAINTEXT RATIO OF THE CALGARY CORPUS

FILES USING ZERO-ORDER ENTROPY.

File 1 map, 16 symbols 16 maps, 8 symbols each

pic 32.88% 31.43%

book1 83.36% 71.09%

paper2 83.95% 72.19%

paper3 84.30% 73.54%

paper4 84.27% 73.97%

progl 86.00% 74.82%

book2 85.05% 75.43%

paper5 86.30% 77.50%

progp 85.63% 77.73%

paper1 86.88% 78.38%

paper6 87.12% 78.81%

news 87.97% 81.73%

progc 88.74% 82.15%

bib 89.07% 82.34%

geo 83.98% 85.22%

trans 93.25% 86.98%

obj1 88.60% 89.62%

obj2 92.85% 94.03%

Table 1 shows that all files can be compressed using the
two configurations. However, the compression performance
of the second configuration (16 maps, 8 symbols each) is
better for most of the files. The image file (pic) is the easiest
to compress due to the redundancy of image pixels. The
corresponding ciphertext length is about one-third the
plaintext length. The executable files (obj1 and obj2) are the
most difficult to compress as the distribution of plaintext
symbols is comparatively uniform. The corresponding
ciphertext sequences are only about 10% shorter than the
plaintext ones.

The compression performance using first-order entropy
can be found in Table 2. Eight next symbols, i.e., K=8, are
selected. The data in the bracket of the rightmost column are
the ratio when the necessary secret parameters are included
as a header of the ciphertext. All the values are below 100%
which imply that all the files can be compressed. The
performance is the best for the pic file that the ciphertext
length is only about one-third of the plaintext, due to the
high redundancy in the picture.

TABLE 2: CIPHERTEXT-TO-PLAINTEXT RATIO OF THE CALGARY CORPUS

FILES USING FIRST-ORDER ENTROPY.

File Size (byte) Ciphertext-to-plaintext ratio (With Header)

pic 513,216 31.67% (32.11%)

progp 49,379 68.31% (72.87%)

progl 71,646 69.49% (72.63%)

paper4 13,286 71.90% (88.76%)

paper5 11,954 72.08% (90.84%)

paper2 82,199 72.20% (74.94%)

trans 93,695 72.23% (74.64%)

obj1 21,504 72.71% (83.16%)

bib 111,261 72.81% (74.84%)

paper3 46,526 72.85% (77.68%)

progc 39,611 73.39% (79.08%)

paper6 38,105 73.49% (79.39%)

book1 768,771 73.50% (73.79%)

paper1 53,161 74.07% (78.30%)

book2 610,856 74.68% (75.05%)

obj2 246,814 74.74% (75.65%)

news 377,109 78.63% (79.23%)

geo 102,400 79.27% (81.47%)

The performance of our algorithm for lossy image
compression is tested using eight standard 512 x 512 gray-
scale images in bitmap format. The tolerance limit of the
pixel value is set to 20. The ciphertext-to-plaintext ratio can
be found in Table 3. It ranges from around 25% to 43%
which shows that the compression performance is
satisfactory. The corresponding peak signal-to-noise ratio
(PSNR) of the reconstructed image is around 30dB.

TABLE 3: CIPHERTEXT-TO-PLAINTEXT RATIO OF LOSSY IMAGE

COMPRESSION.

Image
Original Size

(byte)

Ciphertext-to-plaintext ratio

(With Header)

goldhill 262,144 24.80% (25.66%)

lena 262,144 25.65% (26.51%)

sailboat 262,144 27.18% (28.04%)

peppers 262,144 28.63% (29.49%)

frog512 262,144 31.48% (32.34%)

aerial 262,144 35.57% (36.43%)

barb 262,144 40.17% (41.03%)

baboon 262,144 41.91% (42.77%)

To evaluate the key sensitivity, encryptions using the

all-mask mode for first-order entropy were performed by

introducing a very small change in one of the secret

parameters. Then the resultant ciphertext sequence is

compared with the original one bit-by-bit and the

percentage of bit change is calculated. For parameters b

and x0, the 15
th

 digit after decimal point is changed from

0 to 1. For c-1, the least significant bit (bit 0) is toggled

from 0 to 1. The measured bit change percentages are

49.97%, 50.03% and 49.99% for b, x0 and c-1,

respectively. All the data are close to 50% which indicate

that the ciphertext is very sensitive to the key.

To measure the plaintext sensitivity, a bit is changed at

different positions of the plaintext sequence while the key

remains unchanged. The two resultant ciphertext

sequences are compared bit-by-bit and the percentage of

bit change is calculated. The results are 50.00% (bit

change at the beginning of plaintext), 50.03% (middle)

and 49.98% (end), respectively. They are all close to

50%, which imply that the ciphertext is very sensitive to

the plaintext.
The randomness of the binary mask sequence is

confirmed by the statistical test suite recommended by the
U.S. National Institute of Standards and Technology (NIST)
[22]. Ten sequences, each of 1,000,000 bits, are extracted
for testing and they all pass the statistical tests including
frequency, block-frequency, cumulative-sums, runs, longest-
run, rank, and FFT.

V. CONCLUSION

 An algorithm for the simultaneous compression and

encryption using chaotic maps has been proposed. It can be

applied to lossless data compression as well as lossy image

compression. The effectiveness of the proposed scheme is

confirmed by the satisfactory ciphertext-to-plaintext ratio

using standard data and image files. Simulation results

verify that the ciphertext is very sensitive to a tiny change in

the key or the plaintext and so the security is maintained.

ACKNOWLEDGEMENT

The work described in this paper was fully supported by a

grant from CityU [Project No. 7002070].

REFERENCES

[1] X. Liu, P. Farrell, and C. Boyd, “A unified code” IMA - Crypto &

Coding' 99, LNCS 1746, pp. 84-93, 1999.

[2] M. Grangetto, E. Magli, and G. Olmo, “Multimedia selective

encryption by means of randomized arithmetic coding,” IEEE Trans.

Multimedia, vol. 8, no. 5, pp. 905-917, 2006.

[3] J. Wen, H. Kim, and J. Villasenor, “Binary arithmetic coding with

key-based interval splitting,” IEEE Signal Processing Letters, vol. 13,

no. 2, pp. 69-72, 2006.

[4] H. Kim, J. Wen, and J. Villasenor, “Secure arithmetic coding,” IEEE

Trans. Signal Process., vol. 55, no. 5, pp. 2263-2272, 2007.

[5] C. Wu and C. Kuo, “Design of integrated multimedia compression

and encryption cystems,” IEEE Trans. Multimedia, vol. 7, no. 5, pp.

828-839, 2005.

[6] J. Zhou, Z. Liang, Y. Chen, and O.C. Au, “Security analysis of

multimedia encryption schemes based on multiple Huffman table,”

IEEE Signal Processing Letters, vol. 14, no. 3, pp. 201-204, 2007.

[7] R. Bose and S. Pathak. “A novel compression and encryption scheme

using variable model arithmetic coding and coupled chaotic system,”

IEEE Trans. Circuits and Sys. I, vol. 53, no. 4, pp. 848-857, 2006.

[8] Bo Mi, X. Liao, and Y. Chen, “A novel chaotic encryption scheme

based on arithmetic coding,” to appear in Chaos Solitons and

Fractals.

[9] S. Lian, J. Sun, J. Wang, and Z. Wang, “A chaotic stream cipher and

the usage in video protection,” to appear in Chaos, Solitons and

Fractals.

[10] M.S. Baptista, “Cryptography with chaos,” Physics Letters A, vol.

240, no. 1-2, pp. 50-54, 1998.

[11] W.K. Wong, L.P. Lee and K.W. Wong, “A modified chaotic

cryptographic scheme,” Computer Physics Communications, vol. 138,

no. 3, pp. 234-236, 2001.

[12] K.W. Wong, “A fast chaotic cryptography scheme with dynamic

look-up table,” Physics Letters A, vol. 298, pp. 238-242, 2002.

[13] K.W. Wong, “A combined chaotic cryptographic and hashing

scheme,” Physics Letters A, vol. 307, no. 5-6, pp. 292-298, 2003.

[14] S. Li, G. Chen, K.W. Wong, X. Mou, and Y. Cai, “Baptista-type

chaotic cryptosystems: problems and countermeasures,” Physics

Letters A, vol. 332, pp. 368 – 375, 2004.

[15] G. Alvarez, F. Montoya, M. Romera, G. Pastor, “Cryptanalysis of an

ergodic chaotic cipher,” Physics Letters A, vol. 311, pp. 172-179,

2003.

[16] G. Alvarez, F. Montoya, M. Romera, G. Pastor, “Cryptanalysis of

dynamic look-up table based chaotic cryptosystems,” Physics Letters

A, vol. 326, no. 3–4, pp. 211-218, 2004.

[17] K.W. Wong, K.P. Man, S. Li, X. Liao, “A more secure chaotic

cryptographic scheme based on dynamic look-up table,” Circuits,

Systems and Signal Processing, vol. 24, no. 5, pp. 571-584, 2005.

[18] J. Wei, X. Liao, K.W. Wong, T. Zhou, and Y. Deng, “Analysis and

improvement for the performance of Baptista’s cryptographic

scheme,” Physics Letters A, vol. 354, no. 1-2, pp. 101-109, 2006.

[19] D. Xiao, X. Liao, and K.W. Wong, “Improving the security of a

dynamic look-up table based chaotic cryptosystem,” IEEE Trans.

Circuits and Sys. II, vol. 53, no. 6, pp. 502-506, 2006.

[20] K.W. Wong, S.W. Ho, C.K. Yung, “A chaotic cryptographic scheme

for generating short ciphertext,” Physics Letters A, vol. 310, no. 1,

pp.67-73, 2003.

[21] ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus

[22] A. Rukhin, J. Soto, et al, “A Statistical Test Suite for the Validation

of Random Number Generators and Pseudo Random Number

Generators for Cryptographic Applications,” NIST Special

Publication 800-22,

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.ht

ml

Kwok-Wo Wong graduated with a
BSc(EE) degree from The Chinese
University of Hong Kong and a PhD
degree from City University of Hong
Kong. Currently, he is an Associate
Professor in Department of Electronic
Engineering, City University of Hong

Kong. His research interests include chaos and
cryptography.

Ching-Hung Yuen graduated with a
Bachelor of Engineering in Computer
Engineering from City University of
Hong Kong in 2006. He is working as a
research assistant in the Department of
Electronic Engineering, City University
of Hong Kong. His research interests
include chaos and cryptography.

