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Abstract— We show the phenomenon of complete syn-
chronization in an network of coupled oscillators. We
confirm that non-diagonal coupling can lead to the appear-
ance or disappearance of synchronous windows (ragged
synchronizability phenomenon) in the coupling parameter
space. We also show the appearance of clusters (synchro-
nization in one or more group) between coupled systems.
Our numerical studies are confirmed by an electronic
experiment.

I. INTRODUCTION

Over the last decade, chaotic synchronization in
the networks of coupled dynamical systems has
been intensively investigated, e.g.,[1-4]. An issue,
the most often appearing during the study of any
synchronization problem, is to determine a syn-
chronization threshold, i.e. the strength of coupling
which is required for the appearance of synchroniza-
tion. In the case of identical systems (the same set of
ODEs and values of the system parameters) a com-
plete synchronization [3] can be obtained. The first
analytical condition for the complete synchroniza-
tion of regular sets (all-to-all or nearest-neighbour
types of coupling) of completely diagonally coupled
identical dynamical systems has been formulated in
[5-7]. A complete diagonal (CD) coupling is real-
ized by all diagonal components of output function
(see Eq. (2)) for each pair of subsystems. Such
a type of coupling induces a situation, when the
condition of synchronization is determined only by
the largest Lyapunov exponent of a node system
and the coupling coefficient [5-9]. This property of
CD coupling causes, that a synchronous range of
a coupling parameter for time-continuous subsys-
tems is only bottom-limited (Fig.1a) by a value of
coupling coefficient being a linear function of the

largest Lyapunov exponent [8]. If the coupling is
partly diagonal (PD, i.e. realized by not all diagonal
components of output function - see Eq. (3)) or non-
diagonal (ND - also or only non-diagonal compo-
nents of output function are used in the coupling -
see Eqs (4) and (5)), then more advanced techniques
like a concept called Master Stability Function (Sec.
II) have to be applied [10]. This approach allows
to solve the networks synchronization problem for
any set of coupling weights, connections or number
of coupled oscillators. Generally, in the literature
dealing with PD or ND coupling problems dominate
the works, where the synchronization ranges of a
coupling parameter are only bottom-limited (like in
the case of CD coupling - see Fig.1b) or they are ou
ble-limited (Fig.1c), i.e. there exists one window of
synchronization (interval) in desynchronous regime
[5-15]. In the previous work [16], we presented an
example of ND coupled oscillators array, in which
more than one separated ranges of synchronization
occur when the coupling strength increases. We
observe the appearance or disappearance of desyn-
chronous windows in coupling parameter space,
when the number of oscillators in the array or
topology of connections changes. This phenomenon
has been called the ragged synchronizability (RSA).
This work describes the RSA phenomenon in an
array of coupled van der Pol’s oscillators. Our nu-
merical studies are supported by a simple electronic
experiment.

II. SYNCHRONIZABILITY OF COUPLED
OSCILLATORS

In order to estimate the synchronization thresh-
olds of a coupling parameter, we apply the idea



of the MSF [10]. Under this approach, the syn-
chronizability of a network of oscillators can be
quantified by the eigenvalue spectrum of the connec-
tivity matrix, i.e. the Laplacian matrix representing
the topology of connections between the network
nodes. The dynamics of any network of N identical
oscillators can be described in block form:

ẋ = F(x) + (σG�H)x (1)

where x = (x1,x2, . . . ,xN) ∈ Rm, F(x) =
(f(x1), , f(xN)), G is the connectivity matrix (e.g.
Eq. (13)), σ is the overall coupling coefficient, �
is a direct (Kronecker) product of two matrices and
H : Rm → Rm is an output function of each oscil-
lator’s variables that is used in the coupling (it is
the same for all nodes). Taking under consideration
the classification of couplings mentioned in Sec. I
we can present the following instances of output
function for 3-D node system:

H =




1 0 0
0 1 0
0 0 1


 , (2)

H =




1 0 0
0 1 0
0 0 0


 , (3)

H =




1 0 0
1 0 0
0 0 1


 , (4)

H =




0 0 0
1 0 0
0 0 1


 . (5)

The H matrices exemplify CD (Eq. (2)), PD (Eq.
(3)) and ND (Eqs (4) and (5)) coupling respectively.
Eq. (5) defines the exemplary case of pure ND
coupling, because all the diagonal components are
equal to zero. In accordance with the MSF concept,
a tendency to synchronization of the network is
a function of the eigenvalues γk of connectivity
matrix G, k = 0, 1, 2, . . . , N − 1. After block
diagonalization of the variational equation of Eq. (1)
there appear N − 1 separated blocks γ̇k = [Df +
σγkDH], (for k = 0, γ0 = 0 is corresponding to the
longitudinal mode), where γk represents different
transverse modes of perturbation from synchronous
state [10-13]. Substituting σγ = α + iβ , where

α = Re(γ), β = Im(γ) and γ represents an
arbitrary value of γk, we obtain generic variational
equation

ζ̇ = [Df + (α + iβ)DH] ζ , (6)

where ζ symbolizes an arbitrary transverse mode.
The connectivity matrix G = {Gij} satisfies∑N

j=1 Gij = 0 (zero row sum) so the synchroniza-
tion manifold x1 = x2 = · · · = xN is invariant
and all the real parts of eigenvalues γk associated
with transversal modes are negative (Re(γk 6=0 < 0).
Hence, we obtain the following spectrum of the
eigenvalues of G : γ0 = 0 ≥ γ1 ≥ · · · ≥
γN−1. Now, we can define the MSF as a surface
representing the largest transversal Lyapunov expo-
nent (TLE) λT , calculated for generic variational
equation, over the complex numbers plane (α, β).
If all the eigenmodes corresponding to eigenvalues
σγk = αk + iβk can be found in the ranges of
negative TLE then the synchronous state is stable
for the considered configuration of the couplings. If
an interaction between each pair of nodes is mutual
and symmetrical there exist only real eigenvalues
of matrix G (βk = 0). In such a case, which is
called the real coupling [12-13], the matrix G is
symmetrical (see Eq. (13)) and the MSF is reduced
to a form of a curve representing the largest TLE in
function of a real number α fulfilling the equation

α = σγ . (7)

In Figs 1a–c typical examples of the MSF for CD
coupling (Fig. 1a) and for PD or ND coupling (Figs
1b,c) are shown.

If the real coupling is applied to a set of os-
cillators with the MSF providing a single range
of negative TLE as it is shown in Figs 1a, 1b
and 1c, then the synchronous interval of a cou-
pling parameter σ is simply reflected from the
synchronous α-interval according to Eq. (7). For
the case of MSF with double-limited α-interval of
negative TLE (Fig. 1c) two transverse eigenmodes
have an influence on the σ-limits of the synchronous
regime: the longest spatial-frequency mode, cor-
responding to the largest eigenvalue γ1, and the
shortest spatial-frequency mode, corresponding to
the smallest eigenvalue γN−1. These both eigenval-
ues determine the width of synchronous σ-range
and two types of desynchronizing bifurcations can



Fig. 1. Typical examples of MSF - λT (α) in the case of real
coupling: (a, b) bottom-limited synchronous range (α1,∞), (c)
double-limited synchronous interval (α1, α2).

occur when the synchronous state loses its stability
[11]. Decreasing σ leads to a long wavelength
bifurcation (LWB), because the longest wavelength
mode γ1 becomes unstable. On the other hand, the
increase of the couplin strength causes the shortest
wavelength mode γN−1 to become unstable, thus a
short wavelength bifurcation (SWB) takes place [11-
13]. Another, characteristic feature of the coupled
systems with double-limited synchronous interval
is the array size limit, i.e. a maximum number of
oscillators in an array which are able to synchronize.
For the number of oscillators, which is larger then
the size limit, the synchronous σ-interval does not
exist. Such an interval exists if γN−1/γ1 < α2/α1 ,
where α1 and α2 are the boundaries of synchronous
-α -interval (see Fig. 1c) [10-13]. If the synchronous
range is only bottom-limited as it is depicted in Figs
1a and 1b, then the boundary (the smallest) value of
σ, required for the appearance of synchronization,
is determined only by the value of γ1 and then
desynchronizing LWB occurs with the decrease of
σ. A type of single synchronous range appearing in
the systems with PD coupl g depends on conditional
Lyapunov exponents (CLEs) [4] of the remaining,
uncoupled sub-block of node system. This property
results from the asymptotic effect of the PD cou-
pling [12-13]. An essence of this effect, depicted in
Figs 1b and 1c, is that the largest TLE (MSF) tends
asymptotically to the value of the largest CLE (λC)
for strong coupling. Therefore, for negative λC the
synchronous range is only bottom-limited (Fig. 1b)
and for positive λC such a range is double-limited
(Fig. 1c).

In numerical studies van der Pol’s oscillator

ẋ = z (8a)
ż = d(1− x2)z − x + cos(Ωτ), (8b)

where d and Ω are constant, has been taken as
an array node. Ω represents the frequency of the
external excitation. The evolution of each oscillator
coupled in 3-dimensional array is given by



ẋ1 = z1, (9a)
ż1 = d(1− x2

1)z1 − x1 + cos(Ωτ) + σ(x2 − x1),
(9b)

ẋ2 = z2, (9c)
ż2 = d(1− x2

2)z2 − x2 + cos(Ωτ) + σ(x1 + x3 − 2x2),
(9d)

ẋ3 = z3, (9e)
ż3 = d(1− x2

3)z2 − x2 + cos(Ωτ) + σ(x2 − x3),
(9f)

where σ is a constant coupling coefficient and i =
1, 2, 3.

Fig. 2. The model of an open array of van der Pol’s oscillators.

In the numerical analysis we assumed d = 0.401
and considered Ω and σ as control parameters.
Eqs. (8) model, for example, a chain (the nearest-
neighbor configuration of couplings) of 3 van der
Pol’s oscillators coupled in the open chain shown
in Fig. 2. Such a connection of oscillators can be
classified as the case of pure (diagonal components
are equal to zero) ND coupling due to the form of
output function

H =

[
0 0
1 0

]
. (10)

The structure of the nearest-neighbor connections of
array nodes is described by the following connec-
tivity matrix

G =



−1 1 0

1 −2 1
0 1 −1


 . (11)

Matrix G has the following eigenvalues γ0 =
0, γ1 = −1, γ2 = −3. Since nonzero eigenvalues
are not equal to each other one can expect the ap-
pearance of RSA. Substituting the analyzed system
(Eqs (8) and (10)) in Eq. (6) we obtain the generic

variational equation for calculating the MSF, i.e.,
λT (α) in the form

ζ̇ = ψ, (12a)

ψ̇ = d(1− x2)ζ − 2dxψζ − ψ + αψ. (12b)

III. NUMERICAL AND EXPERIMENTAL RESULTS

Figure 3 presents the value of the synchronization
error

e =
3∑

i=2

√
(x1 − xi)

2 + (z1 − zi)
2, (13)

versus the coupling coefficient σ and the frequency
of external excitation Ω.

Fig. 3. The synchronization error e =∑3
i=2

√
(x1 − xi)

2 + (z1 − zi)
2 versus coupling coefficient

σ and the frequency of external excitation Ω for Eqs. (9):
d = 0.401.

In the white region e < 0.02 so we assumed
that the systems are synchronized, grey and black
regions denote desynchronization connected with
the modes associated with eigenvalues γ1 and γ2

respectively. The calculations have been performed
according to the idea of MSF for the probe of two
oscillators [12-13]. One can expect RSA to appear
for Ω ∈ (1.2, 1.5).

As an example consider Ω = 1.22, i.e., in the
absence of coupling each oscillator shows periodic
behavior with the period equal to the period of
excitation. In Fig. 4(a,b) we present the bifurcation
diagrams of MSF versus the coupling coefficient σ.
The diagram shown in Fig. 4(a) is based on the



Fig. 4. Bifurcation diagrams of MSF versus coupling coefficient σ:
d = 0.401, Ω = 1.22; (a) diagram based on the transverse Lyapunov
exponent λ1

T , desynchronization intervals connected with eigenvalues
γ1 and γ2 are shown in grey and black respectively, (b) diagram
based on the synchronization error eMSF calculated according to
two oscillators probe.

transverse Lyapunov exponent λ1
T (desynchroniza-

tion intervals connected with eigenvalues γ1 and γ2

are shown in grey and black respectively), while
the one in Fig. 4(b) on the synchronization error
eMSF calculated according to two oscillators probe
[12,13]. In both diagrams the ragged synchroniz-
ability is visible as the ’windows’ of synchroniza-
tion and desynchronization can be observed, before
the final synchronous state is achieved due to the
increase of the coupling strength at σ = 0.8.

To confirm the existence of RSA in the real
systems we have performed an experiment in which
van der Pol’s oscillator has been implemented as an
electronic circuit [17]. We have considered dynam-
ics of three circuits coupled in the way described in
Sec. 3. An example of typical experimental results
is shown in Fig. 5, were we plot the synchronization
error e versus σ. These results have been obtained

for the same parameter values as the numerical
results of Fig. 4(a,b).

Fig. 5. Experimental synchronization error e versus σ: d = 0.401,
Ω = 1.22.

It should be mentioned here that in the exper-
iments it is impossible to avoid parameter mis-
matches so the complete synchronization is replaced
by the imperfect complete synchronization in which
synchronization error is sufficiently small but not
equal to zero. One can see a good agreement in
both results. The details of this experiment will be
reported elsewhere [18].

In considered network one can observe the phe-
nomenon of clustering [19,20]. Such behaviour cor-
responding to existence one or more groups of syn-
chronized oscillators although the whole network is
in the desynchronized state. In our case we can obvi-
ously observe only (2,1) cluster, i.e, two nodes have
common behaviour and one node is independent.
We defined the synchronization errors between first

and second (e1−2 =
√

(x1 − x2)
2 + (z1 − z2)

2) and

first and third (e1−3 =
√

(x1 − x3)
2 + (z1 − z3)

2)
oscillator. In Figure 6 we present results of numeri-
cal calculation of synchronization error e1−2 (black
line) and e1−3 (grey line).

As it easy to see in range σ = (0.1, 0.27) one can
observed a cluster between fist and third oscillator,
while second system is in the desynchronized state
with them. This phenomenon is confirmed by cal-
culation of eigenvectors [21] of connectivity matrix
G. The synchroniation in range σ = (0.1, 0.27) is
governed by eigenvalue γ2 = −3 with correspond-
ing eigenvector v2 = [1,−2, 1]. This values of v2



Fig. 6. Experimental synchronization error e versus σ: d = 0.401,
Ω = 1.22.

leads to existence of cluster shown in Figure 6.

IV. CONCLUSIONS

To summarize, we have confirmed and explained
the phenomenon of the ragged synchronizability
(RSA)in the networks of van der Pol’s oscillators
with ND coupling between the nodes. Its occurrence
is independent of the motion character (periodic or
chaotic) of an isolated node system. We have shown
the mechanism responsible for the appearance or
disappearance of the windows of synchronizability
is the same as the previously studied network of
Duffing oscillators [16]. It seems that the phome-
nonon of RSA is common for the systems with non-
diagonal coupling and not sensitive for the small
parameter mismatch, i.e., can be observed in real
experimental systems.
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